Information on Result #704353

Linear OA(388, 747, F3, 21) (dual of [747, 659, 22]-code), using construction XX applied to C1 = C([345,364]), C2 = C([348,365]), C3 = C1 + C2 = C([348,364]), and C∩ = C1 ∩ C2 = C([345,365]) based on
  1. linear OA(379, 728, F3, 20) (dual of [728, 649, 21]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {345,346,…,364}, and designed minimum distance d ≥ |I|+1 = 21 [i]
  2. linear OA(373, 728, F3, 18) (dual of [728, 655, 19]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {348,349,…,365}, and designed minimum distance d ≥ |I|+1 = 19 [i]
  3. linear OA(385, 728, F3, 21) (dual of [728, 643, 22]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {345,346,…,365}, and designed minimum distance d ≥ |I|+1 = 22 [i]
  4. linear OA(367, 728, F3, 17) (dual of [728, 661, 18]-code), using the primitive BCH-code C(I) with length 728 = 36−1, defining interval I = {348,349,…,364}, and designed minimum distance d ≥ |I|+1 = 18 [i]
  5. linear OA(33, 13, F3, 2) (dual of [13, 10, 3]-code), using
  6. linear OA(30, 6, F3, 0) (dual of [6, 6, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(388, 590, F3, 2, 21) (dual of [(590, 2), 1092, 22]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(388, 590, F3, 3, 21) (dual of [(590, 3), 1682, 22]-NRT-code) [i]
3Linear OOA(388, 590, F3, 4, 21) (dual of [(590, 4), 2272, 22]-NRT-code) [i]
4Linear OOA(388, 590, F3, 5, 21) (dual of [(590, 5), 2862, 22]-NRT-code) [i]
5Digital (67, 88, 590)-net over F3 [i]