Information on Result #706150

Linear OA(441, 255, F4, 14) (dual of [255, 214, 15]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,13], and designed minimum distance d ≥ |I|+1 = 15

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(441, 171, F4, 2, 14) (dual of [(171, 2), 301, 15]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(441, 171, F4, 3, 14) (dual of [(171, 3), 472, 15]-NRT-code) [i]
3Digital (27, 41, 171)-net over F4 [i]
4Linear OA(461, 287, F4, 18) (dual of [287, 226, 19]-code) [i]Construction XX with Cyclic Codes
5Linear OA(445, 263, F4, 15) (dual of [263, 218, 16]-code) [i]
6Linear OA(460, 282, F4, 18) (dual of [282, 222, 19]-code) [i]
7Linear OA(450, 268, F4, 16) (dual of [268, 218, 17]-code) [i]
8Linear OA(464, 282, F4, 19) (dual of [282, 218, 20]-code) [i]
9Linear OA(463, 280, F4, 19) (dual of [280, 217, 20]-code) [i]
10Linear OA(449, 263, F4, 16) (dual of [263, 214, 17]-code) [i]
11Linear OA(467, 280, F4, 20) (dual of [280, 213, 21]-code) [i]
12Linear OA(468, 282, F4, 21) (dual of [282, 214, 22]-code) [i]
13Linear OA(474, 287, F4, 22) (dual of [287, 213, 23]-code) [i]
14Linear OA(471, 285, F4, 22) (dual of [285, 214, 23]-code) [i]
15Linear OA(477, 290, F4, 23) (dual of [290, 213, 24]-code) [i]