Information on Result #706172
Linear OA(459, 255, F4, 20) (dual of [255, 196, 21]-code), using the primitive BCH-code C(I) with length 255 = 44−1, defining interval I = {67,68,…,86}, and designed minimum distance d ≥ |I|+1 = 21
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
- Primitive BCH-Codes (hidden) [i]
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(459, 207, F4, 2, 20) (dual of [(207, 2), 355, 21]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(459, 207, F4, 3, 20) (dual of [(207, 3), 562, 21]-NRT-code) | [i] | ||
3 | Digital (39, 59, 207)-net over F4 | [i] | ||
4 | Linear OA(468, 283, F4, 20) (dual of [283, 215, 21]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
5 | Linear OA(466, 281, F4, 20) (dual of [281, 215, 21]-code) | [i] | ✔ | |
6 | Linear OA(465, 279, F4, 20) (dual of [279, 214, 21]-code) | [i] | ✔ | |
7 | Linear OA(464, 275, F4, 20) (dual of [275, 211, 21]-code) | [i] | ✔ | |
8 | Linear OA(463, 273, F4, 20) (dual of [273, 210, 21]-code) | [i] | ✔ | |
9 | Linear OA(476, 286, F4, 23) (dual of [286, 210, 24]-code) | [i] | ✔ | |
10 | Linear OA(464, 264, F4, 22) (dual of [264, 200, 23]-code) | [i] | ✔ | |
11 | Linear OA(470, 270, F4, 23) (dual of [270, 200, 24]-code) | [i] | ✔ | |
12 | Linear OA(476, 278, F4, 24) (dual of [278, 202, 25]-code) | [i] | ✔ | |
13 | Linear OA(475, 275, F4, 24) (dual of [275, 200, 25]-code) | [i] | ✔ | |
14 | Linear OA(485, 285, F4, 26) (dual of [285, 200, 27]-code) | [i] | ✔ | |
15 | Linear OA(484, 283, F4, 26) (dual of [283, 199, 27]-code) | [i] | ✔ | |
16 | Linear OA(494, 285, F4, 29) (dual of [285, 191, 30]-code) | [i] | ✔ |