Information on Result #706326

Linear OA(463, 255, F4, 22) (dual of [255, 192, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 255 = 44−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(483, 287, F4, 26) (dual of [287, 204, 27]-code) [i]Construction XX with Cyclic Codes
2Linear OA(467, 263, F4, 23) (dual of [263, 196, 24]-code) [i]
3Linear OA(489, 292, F4, 27) (dual of [292, 203, 28]-code) [i]
4Linear OA(482, 282, F4, 26) (dual of [282, 200, 27]-code) [i]
5Linear OA(472, 268, F4, 24) (dual of [268, 196, 25]-code) [i]
6Linear OA(488, 287, F4, 27) (dual of [287, 199, 28]-code) [i]
7Linear OA(479, 275, F4, 26) (dual of [275, 196, 27]-code) [i]
8Linear OA(486, 282, F4, 27) (dual of [282, 196, 28]-code) [i]
9Linear OA(485, 280, F4, 27) (dual of [280, 195, 28]-code) [i]
10Linear OA(471, 263, F4, 24) (dual of [263, 192, 25]-code) [i]
11Linear OA(483, 275, F4, 27) (dual of [275, 192, 28]-code) [i]
12Linear OA(489, 280, F4, 28) (dual of [280, 191, 29]-code) [i]
13Linear OA(490, 282, F4, 29) (dual of [282, 192, 30]-code) [i]
14Linear OA(496, 287, F4, 30) (dual of [287, 191, 31]-code) [i]
15Linear OA(495, 287, F4, 30) (dual of [287, 192, 31]-code) [i]
16Linear OA(4101, 292, F4, 31) (dual of [292, 191, 32]-code) [i]