Information on Result #713650

Linear OA(752, 342, F7, 20) (dual of [342, 290, 21]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {38,39,…,57}, and designed minimum distance d ≥ |I|+1 = 21

Mode: Constructive and linear.

This result is hidden, because other results with identical parameters exist.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(752, 302, F7, 2, 20) (dual of [(302, 2), 552, 21]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(752, 302, F7, 3, 20) (dual of [(302, 3), 854, 21]-NRT-code) [i]
3Digital (32, 52, 302)-net over F7 [i]
4Linear OA(759, 349, F7, 23) (dual of [349, 290, 24]-code) [i]Construction XX with Cyclic Codes
5Linear OA(763, 353, F7, 24) (dual of [353, 290, 25]-code) [i]
6Linear OA(768, 358, F7, 25) (dual of [358, 290, 26]-code) [i]
7Linear OA(773, 363, F7, 26) (dual of [363, 290, 27]-code) [i]
8Linear OA(777, 367, F7, 27) (dual of [367, 290, 28]-code) [i]
9Linear OA(789, 379, F7, 30) (dual of [379, 290, 31]-code) [i]
10Linear OA(767, 357, F7, 25) (dual of [357, 290, 26]-code) [i]
11Linear OA(793, 383, F7, 31) (dual of [383, 290, 32]-code) [i]
12Linear OA(798, 388, F7, 32) (dual of [388, 290, 33]-code) [i]
13Linear OA(7102, 392, F7, 33) (dual of [392, 290, 34]-code) [i]
14Linear OA(7107, 397, F7, 34) (dual of [397, 290, 35]-code) [i]