Information on Result #713782
Linear OA(767, 348, F7, 26) (dual of [348, 281, 27]-code), using construction XX applied to C1 = C([341,23]), C2 = C([0,24]), C3 = C1 + C2 = C([0,23]), and C∩ = C1 ∩ C2 = C([341,24]) based on
- linear OA(764, 342, F7, 25) (dual of [342, 278, 26]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−1,0,…,23}, and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(764, 342, F7, 25) (dual of [342, 278, 26]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,24], and designed minimum distance d ≥ |I|+1 = 26 [i]
- linear OA(767, 342, F7, 26) (dual of [342, 275, 27]-code), using the primitive BCH-code C(I) with length 342 = 73−1, defining interval I = {−1,0,…,24}, and designed minimum distance d ≥ |I|+1 = 27 [i]
- linear OA(761, 342, F7, 24) (dual of [342, 281, 25]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 342 = 73−1, defining interval I = [0,23], and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(70, s, F7, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(70, 3, F7, 0) (dual of [3, 3, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(768, 358, F7, 26) (dual of [358, 290, 27]-code) | [i] | Varšamov–Edel Lengthening | |
2 | Linear OA(769, 379, F7, 26) (dual of [379, 310, 27]-code) | [i] | ||
3 | Linear OOA(767, 174, F7, 2, 26) (dual of [(174, 2), 281, 27]-NRT-code) | [i] | OOA Folding | |
4 | Linear OOA(767, 116, F7, 3, 26) (dual of [(116, 3), 281, 27]-NRT-code) | [i] |