Information on Result #723477
Linear OA(2546, 624, F25, 23) (dual of [624, 578, 24]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {3,4,…,25}, and designed minimum distance d ≥ |I|+1 = 24
Mode: Constructive and linear.
This result is hidden, because other results with identical parameters exist.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2546, 349, F25, 2, 23) (dual of [(349, 2), 652, 24]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Digital (23, 46, 349)-net over F25 | [i] | ||
3 | Linear OA(2558, 653, F25, 25) (dual of [653, 595, 26]-code) | [i] | ✔ | Construction XX with Cyclic Codes |
4 | Linear OA(2576, 654, F25, 35) (dual of [654, 578, 36]-code) | [i] | ✔ | |
5 | Linear OA(2581, 659, F25, 36) (dual of [659, 578, 37]-code) | [i] | ✔ | |
6 | Linear OA(2580, 657, F25, 36) (dual of [657, 577, 37]-code) | [i] | ✔ | |
7 | Linear OA(2579, 657, F25, 36) (dual of [657, 578, 37]-code) | [i] | ✔ | |
8 | Linear OA(2584, 662, F25, 37) (dual of [662, 578, 38]-code) | [i] | ✔ | |
9 | Linear OA(2583, 660, F25, 37) (dual of [660, 577, 38]-code) | [i] | ✔ | |
10 | Linear OA(2582, 660, F25, 37) (dual of [660, 578, 38]-code) | [i] | ✔ | |
11 | Linear OA(2587, 665, F25, 38) (dual of [665, 578, 39]-code) | [i] | ✔ | |
12 | Linear OA(2586, 663, F25, 38) (dual of [663, 577, 39]-code) | [i] | ✔ | |
13 | Linear OA(2585, 663, F25, 38) (dual of [663, 578, 39]-code) | [i] | ✔ | |
14 | Linear OA(2590, 668, F25, 39) (dual of [668, 578, 40]-code) | [i] | ✔ | |
15 | Linear OA(2589, 666, F25, 39) (dual of [666, 577, 40]-code) | [i] | ✔ | |
16 | Linear OA(2588, 666, F25, 39) (dual of [666, 578, 40]-code) | [i] | ✔ | |
17 | Linear OA(2593, 671, F25, 40) (dual of [671, 578, 41]-code) | [i] | ✔ | |
18 | Linear OA(2592, 669, F25, 40) (dual of [669, 577, 41]-code) | [i] | ✔ | |
19 | Linear OA(2591, 669, F25, 40) (dual of [669, 578, 41]-code) | [i] | ✔ | |
20 | Linear OA(2596, 674, F25, 41) (dual of [674, 578, 42]-code) | [i] | ✔ | |
21 | Linear OA(2595, 672, F25, 41) (dual of [672, 577, 42]-code) | [i] | ✔ | |
22 | Linear OA(2594, 672, F25, 41) (dual of [672, 578, 42]-code) | [i] | ✔ | |
23 | Linear OA(2599, 677, F25, 42) (dual of [677, 578, 43]-code) | [i] | ✔ | |
24 | Linear OA(2598, 675, F25, 42) (dual of [675, 577, 43]-code) | [i] | ✔ | |
25 | Linear OA(2597, 675, F25, 42) (dual of [675, 578, 43]-code) | [i] | ✔ | |
26 | Linear OA(25102, 680, F25, 43) (dual of [680, 578, 44]-code) | [i] | ✔ | |
27 | Linear OA(25101, 678, F25, 43) (dual of [678, 577, 44]-code) | [i] | ✔ | |
28 | Linear OA(25106, 684, F25, 44) (dual of [684, 578, 45]-code) | [i] | ✔ | |
29 | Linear OA(25105, 682, F25, 44) (dual of [682, 577, 45]-code) | [i] | ✔ |