Information on Result #723478
Linear OA(2533, 628, F25, 17) (dual of [628, 595, 18]-code), using construction XX applied to C1 = C([623,14]), C2 = C([0,15]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([623,15]) based on
- linear OA(2531, 624, F25, 16) (dual of [624, 593, 17]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,14}, and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(2531, 624, F25, 16) (dual of [624, 593, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
- linear OA(2533, 624, F25, 17) (dual of [624, 591, 18]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(2529, 624, F25, 15) (dual of [624, 595, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2541, 654, F25, 17) (dual of [654, 613, 18]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(2542, 657, F25, 17) (dual of [657, 615, 18]-code) | [i] | ||
3 | Linear OA(2543, 659, F25, 17) (dual of [659, 616, 18]-code) | [i] | ||
4 | Linear OA(2544, 680, F25, 17) (dual of [680, 636, 18]-code) | [i] | ||
5 | Linear OA(2545, 694, F25, 17) (dual of [694, 649, 18]-code) | [i] | ||
6 | Linear OA(2546, 708, F25, 17) (dual of [708, 662, 18]-code) | [i] | ||
7 | Linear OA(2547, 731, F25, 17) (dual of [731, 684, 18]-code) | [i] | ||
8 | Linear OA(2537, 647, F25, 17) (dual of [647, 610, 18]-code) | [i] | Varšamov–Edel Lengthening | |
9 | Linear OA(2538, 681, F25, 17) (dual of [681, 643, 18]-code) | [i] | ||
10 | Linear OA(2539, 760, F25, 17) (dual of [760, 721, 18]-code) | [i] | ||
11 | Linear OA(2540, 899, F25, 17) (dual of [899, 859, 18]-code) | [i] | ||
12 | Linear OA(2541, 1092, F25, 17) (dual of [1092, 1051, 18]-code) | [i] | ||
13 | Linear OOA(2533, 314, F25, 2, 17) (dual of [(314, 2), 595, 18]-NRT-code) | [i] | OOA Folding |