Information on Result #723562
Linear OA(2537, 628, F25, 19) (dual of [628, 591, 20]-code), using construction XX applied to C1 = C([623,16]), C2 = C([0,17]), C3 = C1 + C2 = C([0,16]), and C∩ = C1 ∩ C2 = C([623,17]) based on
- linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,16}, and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(2535, 624, F25, 18) (dual of [624, 589, 19]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,17], and designed minimum distance d ≥ |I|+1 = 19 [i]
- linear OA(2537, 624, F25, 19) (dual of [624, 587, 20]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,17}, and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(2533, 624, F25, 17) (dual of [624, 591, 18]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,16], and designed minimum distance d ≥ |I|+1 = 18 [i]
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(250, s, F25, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(574, 1256, F5, 19) (dual of [1256, 1182, 20]-code) | [i] | Trace Code | |
2 | Linear OA(2549, 680, F25, 19) (dual of [680, 631, 20]-code) | [i] | (u, u+v)-Construction | |
3 | Linear OA(2550, 694, F25, 19) (dual of [694, 644, 20]-code) | [i] | ||
4 | Linear OA(2551, 696, F25, 19) (dual of [696, 645, 20]-code) | [i] | ||
5 | Linear OA(2552, 732, F25, 19) (dual of [732, 680, 20]-code) | [i] | ||
6 | Linear OA(2553, 836, F25, 19) (dual of [836, 783, 20]-code) | [i] | ||
7 | Linear OA(2541, 643, F25, 19) (dual of [643, 602, 20]-code) | [i] | Varšamov–Edel Lengthening | |
8 | Linear OA(2542, 668, F25, 19) (dual of [668, 626, 20]-code) | [i] | ||
9 | Linear OA(2543, 727, F25, 19) (dual of [727, 684, 20]-code) | [i] | ||
10 | Linear OA(2544, 838, F25, 19) (dual of [838, 794, 20]-code) | [i] | ||
11 | Linear OA(2545, 993, F25, 19) (dual of [993, 948, 20]-code) | [i] | ||
12 | Linear OOA(2537, 314, F25, 2, 19) (dual of [(314, 2), 591, 20]-NRT-code) | [i] | OOA Folding |