Information on Result #726151
Linear OA(2747, 732, F27, 24) (dual of [732, 685, 25]-code), using construction XX applied to C1 = C([727,21]), C2 = C([0,22]), C3 = C1 + C2 = C([0,21]), and C∩ = C1 ∩ C2 = C([727,22]) based on
- linear OA(2745, 728, F27, 23) (dual of [728, 683, 24]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,21}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(2745, 728, F27, 23) (dual of [728, 683, 24]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,22], and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(2747, 728, F27, 24) (dual of [728, 681, 25]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,22}, and designed minimum distance d ≥ |I|+1 = 25 [i]
- linear OA(2743, 728, F27, 22) (dual of [728, 685, 23]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,21], and designed minimum distance d ≥ |I|+1 = 23 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2761, 780, F27, 24) (dual of [780, 719, 25]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(2762, 784, F27, 24) (dual of [784, 722, 25]-code) | [i] | ||
3 | Linear OA(2763, 796, F27, 24) (dual of [796, 733, 25]-code) | [i] | ||
4 | Linear OA(2764, 800, F27, 24) (dual of [800, 736, 25]-code) | [i] | ||
5 | Linear OA(2765, 808, F27, 24) (dual of [808, 743, 25]-code) | [i] | ||
6 | Linear OA(2766, 814, F27, 24) (dual of [814, 748, 25]-code) | [i] | ||
7 | Linear OA(2767, 816, F27, 24) (dual of [816, 749, 25]-code) | [i] | ||
8 | Linear OA(2768, 840, F27, 24) (dual of [840, 772, 25]-code) | [i] | ||
9 | Linear OA(2752, 752, F27, 24) (dual of [752, 700, 25]-code) | [i] | Varšamov–Edel Lengthening | |
10 | Linear OA(2753, 785, F27, 24) (dual of [785, 732, 25]-code) | [i] | ||
11 | Linear OA(2754, 858, F27, 24) (dual of [858, 804, 25]-code) | [i] | ||
12 | Linear OA(2755, 974, F27, 24) (dual of [974, 919, 25]-code) | [i] | ||
13 | Linear OOA(2747, 366, F27, 2, 24) (dual of [(366, 2), 685, 25]-NRT-code) | [i] | OOA Folding |