Information on Result #728536
Linear OA(3257, 1027, F32, 29) (dual of [1027, 970, 30]-code), using construction XX applied to C1 = C([1022,26]), C2 = C([0,27]), C3 = C1 + C2 = C([0,26]), and C∩ = C1 ∩ C2 = C([1022,27]) based on
- linear OA(3255, 1023, F32, 28) (dual of [1023, 968, 29]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,26}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(3255, 1023, F32, 28) (dual of [1023, 968, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(3257, 1023, F32, 29) (dual of [1023, 966, 30]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,27}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(3253, 1023, F32, 27) (dual of [1023, 970, 28]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,26], and designed minimum distance d ≥ |I|+1 = 28 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(895, 1027, S8, 29) | [i] | Discarding Parts of the Base for OAs | |
2 | OA(1672, 1027, S16, 29) | [i] | ||
3 | Linear OA(3274, 1091, F32, 29) (dual of [1091, 1017, 30]-code) | [i] | (u, u+v)-Construction | |
4 | Linear OA(3275, 1093, F32, 29) (dual of [1093, 1018, 30]-code) | [i] | ||
5 | Linear OA(3276, 1103, F32, 29) (dual of [1103, 1027, 30]-code) | [i] | ||
6 | Linear OA(3277, 1105, F32, 29) (dual of [1105, 1028, 30]-code) | [i] | ||
7 | Linear OA(3278, 1125, F32, 29) (dual of [1125, 1047, 30]-code) | [i] | ||
8 | Linear OA(3279, 1127, F32, 29) (dual of [1127, 1048, 30]-code) | [i] | ||
9 | Linear OA(3280, 1131, F32, 29) (dual of [1131, 1051, 30]-code) | [i] | ||
10 | Linear OA(3281, 1133, F32, 29) (dual of [1133, 1052, 30]-code) | [i] | ||
11 | Linear OA(3282, 1147, F32, 29) (dual of [1147, 1065, 30]-code) | [i] | ||
12 | Linear OA(3283, 1372, F32, 29) (dual of [1372, 1289, 30]-code) | [i] | ||
13 | Linear OA(3284, 2054, F32, 29) (dual of [2054, 1970, 30]-code) | [i] | ||
14 | Linear OA(3263, 1060, F32, 29) (dual of [1060, 997, 30]-code) | [i] | Varšamov–Edel Lengthening | |
15 | Linear OA(3264, 1100, F32, 29) (dual of [1100, 1036, 30]-code) | [i] | ||
16 | Linear OA(3265, 1179, F32, 29) (dual of [1179, 1114, 30]-code) | [i] | ||
17 | Linear OA(3266, 1306, F32, 29) (dual of [1306, 1240, 30]-code) | [i] | ||
18 | Linear OA(3267, 1471, F32, 29) (dual of [1471, 1404, 30]-code) | [i] |