Information on Result #728620

Linear OA(3265, 1033, F32, 32) (dual of [1033, 968, 33]-code), using construction XX applied to C1 = C([1020,27]), C2 = C([0,28]), C3 = C1 + C2 = C([0,27]), and C∩ = C1 ∩ C2 = C([1020,28]) based on
  1. linear OA(3261, 1023, F32, 31) (dual of [1023, 962, 32]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,27}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(3257, 1023, F32, 29) (dual of [1023, 966, 30]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,28], and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(3263, 1023, F32, 32) (dual of [1023, 960, 33]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−3,−2,…,28}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(3255, 1023, F32, 28) (dual of [1023, 968, 29]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,27], and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(322, 8, F32, 2) (dual of [8, 6, 3]-code or 8-arc in PG(1,32)), using
  6. linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(8109, 1033, S8, 32) [i]Discarding Parts of the Base for OAs
2OA(1682, 1033, S16, 32) [i]
3Linear OOA(3265, 618, F32, 2, 32) (dual of [(618, 2), 1171, 33]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
4Digital (33, 65, 618)-net over F32 [i]
5Linear OOA(3265, 516, F32, 2, 32) (dual of [(516, 2), 967, 33]-NRT-code) [i]OOA Folding