Information on Result #729100
Linear OA(3272, 1027, F32, 38) (dual of [1027, 955, 39]-code), using construction XX applied to C1 = C([1022,35]), C2 = C([0,36]), C3 = C1 + C2 = C([0,35]), and C∩ = C1 ∩ C2 = C([1022,36]) based on
- linear OA(3270, 1023, F32, 37) (dual of [1023, 953, 38]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,35}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(3270, 1023, F32, 37) (dual of [1023, 953, 38]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,36], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(3272, 1023, F32, 38) (dual of [1023, 951, 39]-code), using the primitive BCH-code C(I) with length 1023 = 322−1, defining interval I = {−1,0,…,36}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(3268, 1023, F32, 36) (dual of [1023, 955, 37]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 1023 = 322−1, defining interval I = [0,35], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(320, s, F32, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(320, 2, F32, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | OA(8120, 1027, S8, 38) | [i] | Discarding Parts of the Base for OAs | |
2 | OA(1690, 1027, S16, 38) | [i] | ||
3 | Linear OA(3294, 1091, F32, 38) (dual of [1091, 997, 39]-code) | [i] | (u, u+v)-Construction | |
4 | Linear OA(3295, 1093, F32, 38) (dual of [1093, 998, 39]-code) | [i] | ||
5 | Linear OA(3296, 1103, F32, 38) (dual of [1103, 1007, 39]-code) | [i] | ||
6 | Linear OA(3297, 1105, F32, 38) (dual of [1105, 1008, 39]-code) | [i] | ||
7 | Linear OA(3298, 1125, F32, 38) (dual of [1125, 1027, 39]-code) | [i] | ||
8 | Linear OA(3299, 1127, F32, 38) (dual of [1127, 1028, 39]-code) | [i] | ||
9 | Linear OA(32100, 1131, F32, 38) (dual of [1131, 1031, 39]-code) | [i] | ||
10 | Linear OA(32101, 1133, F32, 38) (dual of [1133, 1032, 39]-code) | [i] | ||
11 | Linear OA(32102, 1147, F32, 38) (dual of [1147, 1045, 39]-code) | [i] | ||
12 | Linear OA(32103, 1149, F32, 38) (dual of [1149, 1046, 39]-code) | [i] | ||
13 | Linear OA(32104, 1151, F32, 38) (dual of [1151, 1047, 39]-code) | [i] | ||
14 | Linear OA(32105, 1153, F32, 38) (dual of [1153, 1048, 39]-code) | [i] | ||
15 | Linear OA(32107, 1231, F32, 38) (dual of [1231, 1124, 39]-code) | [i] | ||
16 | Linear OA(32108, 1372, F32, 38) (dual of [1372, 1264, 39]-code) | [i] | ||
17 | Linear OA(3280, 1051, F32, 38) (dual of [1051, 971, 39]-code) | [i] | Varšamov–Edel Lengthening | |
18 | Linear OA(3281, 1070, F32, 38) (dual of [1070, 989, 39]-code) | [i] | ||
19 | Linear OA(3282, 1107, F32, 38) (dual of [1107, 1025, 39]-code) | [i] | ||
20 | Linear OA(3283, 1169, F32, 38) (dual of [1169, 1086, 39]-code) | [i] | ||
21 | Linear OA(3284, 1260, F32, 38) (dual of [1260, 1176, 39]-code) | [i] | ||
22 | Linear OA(3285, 1376, F32, 38) (dual of [1376, 1291, 39]-code) | [i] |