Information on Result #729978

Linear OA(6456, 589, F64, 30) (dual of [589, 533, 31]-code), using construction XX applied to C1 = C([19,47]), C2 = C([18,46]), C3 = C1 + C2 = C([19,46]), and C∩ = C1 ∩ C2 = C([18,47]) based on
  1. linear OA(6454, 585, F64, 29) (dual of [585, 531, 30]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {19,20,…,47}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  2. linear OA(6454, 585, F64, 29) (dual of [585, 531, 30]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {18,19,…,46}, and designed minimum distance d ≥ |I|+1 = 30 [i]
  3. linear OA(6456, 585, F64, 30) (dual of [585, 529, 31]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {18,19,…,47}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  4. linear OA(6452, 585, F64, 28) (dual of [585, 533, 29]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {19,20,…,46}, and designed minimum distance d ≥ |I|+1 = 29 [i]
  5. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OOA(6456, 589, F64, 2, 30) (dual of [(589, 2), 1122, 31]-NRT-code) [i]Embedding of OOA with Gilbert–VarÅ¡amov Bound
2Linear OOA(6456, 589, F64, 3, 30) (dual of [(589, 3), 1711, 31]-NRT-code) [i]
3Digital (26, 56, 589)-net over F64 [i]
4Linear OOA(6456, 294, F64, 2, 30) (dual of [(294, 2), 532, 31]-NRT-code) [i]OOA Folding
5Linear OOA(6456, 196, F64, 3, 30) (dual of [(196, 3), 532, 31]-NRT-code) [i]