Information on Result #729978
Linear OA(6456, 589, F64, 30) (dual of [589, 533, 31]-code), using construction XX applied to C1 = C([19,47]), C2 = C([18,46]), C3 = C1 + C2 = C([19,46]), and C∩ = C1 ∩ C2 = C([18,47]) based on
- linear OA(6454, 585, F64, 29) (dual of [585, 531, 30]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {19,20,…,47}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(6454, 585, F64, 29) (dual of [585, 531, 30]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {18,19,…,46}, and designed minimum distance d ≥ |I|+1 = 30 [i]
- linear OA(6456, 585, F64, 30) (dual of [585, 529, 31]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {18,19,…,47}, and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(6452, 585, F64, 28) (dual of [585, 533, 29]-code), using the BCH-code C(I) with length 585 | 642−1, defining interval I = {19,20,…,46}, and designed minimum distance d ≥ |I|+1 = 29 [i]
- linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(640, s, F64, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(640, 2, F64, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(6456, 589, F64, 2, 30) (dual of [(589, 2), 1122, 31]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(6456, 589, F64, 3, 30) (dual of [(589, 3), 1711, 31]-NRT-code) | [i] | ||
3 | Digital (26, 56, 589)-net over F64 | [i] | ||
4 | Linear OOA(6456, 294, F64, 2, 30) (dual of [(294, 2), 532, 31]-NRT-code) | [i] | OOA Folding | |
5 | Linear OOA(6456, 196, F64, 3, 30) (dual of [(196, 3), 532, 31]-NRT-code) | [i] |