Information on Result #730378
Linear OA(8173, 660, F81, 39) (dual of [660, 587, 40]-code), using construction XX applied to C1 = C([21,58]), C2 = C([20,57]), C3 = C1 + C2 = C([21,57]), and C∩ = C1 ∩ C2 = C([20,58]) based on
- linear OA(8171, 656, F81, 38) (dual of [656, 585, 39]-code), using the BCH-code C(I) with length 656 | 812−1, defining interval I = {21,22,…,58}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(8171, 656, F81, 38) (dual of [656, 585, 39]-code), using the BCH-code C(I) with length 656 | 812−1, defining interval I = {20,21,…,57}, and designed minimum distance d ≥ |I|+1 = 39 [i]
- linear OA(8173, 656, F81, 39) (dual of [656, 583, 40]-code), using the BCH-code C(I) with length 656 | 812−1, defining interval I = {20,21,…,58}, and designed minimum distance d ≥ |I|+1 = 40 [i]
- linear OA(8169, 656, F81, 37) (dual of [656, 587, 38]-code), using the BCH-code C(I) with length 656 | 812−1, defining interval I = {21,22,…,57}, and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(8173, 330, F81, 2, 39) (dual of [(330, 2), 587, 40]-NRT-code) | [i] | OOA Folding | |
2 | Linear OOA(8173, 220, F81, 3, 39) (dual of [(220, 3), 587, 40]-NRT-code) | [i] |