Information on Result #730432

Linear OA(8161, 824, F81, 32) (dual of [824, 763, 33]-code), using construction XX applied to C1 = C([22,52]), C2 = C([21,51]), C3 = C1 + C2 = C([22,51]), and C∩ = C1 ∩ C2 = C([21,52]) based on
  1. linear OA(8159, 820, F81, 31) (dual of [820, 761, 32]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {22,23,…,52}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  2. linear OA(8159, 820, F81, 31) (dual of [820, 761, 32]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {21,22,…,51}, and designed minimum distance d ≥ |I|+1 = 32 [i]
  3. linear OA(8161, 820, F81, 32) (dual of [820, 759, 33]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {21,22,…,52}, and designed minimum distance d ≥ |I|+1 = 33 [i]
  4. linear OA(8157, 820, F81, 30) (dual of [820, 763, 31]-code), using the BCH-code C(I) with length 820 | 812−1, defining interval I = {22,23,…,51}, and designed minimum distance d ≥ |I|+1 = 31 [i]
  5. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code), using
  6. linear OA(810, 2, F81, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1OA(2782, 824, S27, 32) [i]Discarding Parts of the Base for OAs
2Linear OOA(8161, 412, F81, 2, 32) (dual of [(412, 2), 763, 33]-NRT-code) [i]OOA Folding
3Linear OOA(8161, 206, F81, 4, 32) (dual of [(206, 4), 763, 33]-NRT-code) [i]