Information on Result #730799
Linear OA(25617, 775, F256, 10) (dual of [775, 758, 11]-code), using construction XX applied to C1 = C([253,261]), C2 = C([252,260]), C3 = C1 + C2 = C([253,260]), and C∩ = C1 ∩ C2 = C([252,261]) based on
- linear OA(25615, 771, F256, 9) (dual of [771, 756, 10]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {253,254,…,261}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(25615, 771, F256, 9) (dual of [771, 756, 10]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {252,253,…,260}, and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(25617, 771, F256, 10) (dual of [771, 754, 11]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {252,253,…,261}, and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(25613, 771, F256, 8) (dual of [771, 758, 9]-code), using the BCH-code C(I) with length 771 | 2562−1, defining interval I = {253,254,…,260}, and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(2560, s, F256, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(25658, 66313, F256, 21) (dual of [66313, 66255, 22]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(25656, 66313, F256, 20) (dual of [66313, 66257, 21]-code) | [i] |