Information on Result #805407
Linear OOA(230, 265, F2, 2, 7) (dual of [(265, 2), 500, 8]-NRT-code), using OOA 2-folding based on linear OA(230, 530, F2, 7) (dual of [530, 500, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(230, 531, F2, 7) (dual of [531, 501, 8]-code), using
- construction XX applied to C1 = C([509,2]), C2 = C([0,4]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C([509,4]) [i] based on
- linear OA(219, 511, F2, 5) (dual of [511, 492, 6]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,0,1,2}, and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(219, 511, F2, 5) (dual of [511, 492, 6]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,4], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(228, 511, F2, 7) (dual of [511, 483, 8]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,4}, and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(210, 511, F2, 3) (dual of [511, 501, 4]-code or 511-cap in PG(9,2)), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,2], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code) (see above)
- construction XX applied to C1 = C([509,2]), C2 = C([0,4]), C3 = C1 + C2 = C([0,2]), and C∩ = C1 ∩ C2 = C([509,4]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.