Information on Result #805848
Linear OOA(265, 265, F2, 2, 14) (dual of [(265, 2), 465, 15]-NRT-code), using OOA 2-folding based on linear OA(265, 530, F2, 14) (dual of [530, 465, 15]-code), using
- 1 times truncation [i] based on linear OA(266, 531, F2, 15) (dual of [531, 465, 16]-code), using
- construction XX applied to C1 = C([509,10]), C2 = C([0,12]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([509,12]) [i] based on
- linear OA(255, 511, F2, 13) (dual of [511, 456, 14]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,10}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(255, 511, F2, 13) (dual of [511, 456, 14]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(264, 511, F2, 15) (dual of [511, 447, 16]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,12}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(246, 511, F2, 11) (dual of [511, 465, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code) (see above)
- construction XX applied to C1 = C([509,10]), C2 = C([0,12]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([509,12]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(265, 245, F2, 3, 14) (dual of [(245, 3), 670, 15]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(265, 245, F2, 4, 14) (dual of [(245, 4), 915, 15]-NRT-code) | [i] | ||
3 | Linear OOA(265, 245, F2, 5, 14) (dual of [(245, 5), 1160, 15]-NRT-code) | [i] | ||
4 | Linear OOA(265, 245, F2, 6, 14) (dual of [(245, 6), 1405, 15]-NRT-code) | [i] | ||
5 | Linear OOA(265, 245, F2, 7, 14) (dual of [(245, 7), 1650, 15]-NRT-code) | [i] | ||
6 | Linear OOA(265, 245, F2, 8, 14) (dual of [(245, 8), 1895, 15]-NRT-code) | [i] | ||
7 | Digital (51, 65, 245)-net over F2 | [i] |