Information on Result #866519
Linear OOA(2760, 366, F27, 2, 32) (dual of [(366, 2), 672, 33]-NRT-code), using OOA 2-folding based on linear OA(2760, 732, F27, 32) (dual of [732, 672, 33]-code), using
- construction XX applied to C1 = C([727,29]), C2 = C([0,30]), C3 = C1 + C2 = C([0,29]), and C∩ = C1 ∩ C2 = C([727,30]) [i] based on
- linear OA(2758, 728, F27, 31) (dual of [728, 670, 32]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,29}, and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2758, 728, F27, 31) (dual of [728, 670, 32]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,30], and designed minimum distance d ≥ |I|+1 = 32 [i]
- linear OA(2760, 728, F27, 32) (dual of [728, 668, 33]-code), using the primitive BCH-code C(I) with length 728 = 272−1, defining interval I = {−1,0,…,30}, and designed minimum distance d ≥ |I|+1 = 33 [i]
- linear OA(2756, 728, F27, 30) (dual of [728, 672, 31]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 728 = 272−1, defining interval I = [0,29], and designed minimum distance d ≥ |I|+1 = 31 [i]
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(270, s, F27, 0) (dual of [s, s, 1]-code) for arbitrarily large s, using
- linear OA(270, 2, F27, 0) (dual of [2, 2, 1]-code) (see above)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(2776, 394, F27, 2, 32) (dual of [(394, 2), 712, 33]-NRT-code) | [i] | (u, u+v)-Construction for OOAs | |
2 | Linear OOA(2777, 404, F27, 2, 32) (dual of [(404, 2), 731, 33]-NRT-code) | [i] | ||
3 | Linear OOA(2778, 414, F27, 2, 32) (dual of [(414, 2), 750, 33]-NRT-code) | [i] | ||
4 | Linear OOA(2779, 418, F27, 2, 32) (dual of [(418, 2), 757, 33]-NRT-code) | [i] | ||
5 | Linear OOA(2780, 430, F27, 2, 32) (dual of [(430, 2), 780, 33]-NRT-code) | [i] | ||
6 | Linear OOA(2781, 434, F27, 2, 32) (dual of [(434, 2), 787, 33]-NRT-code) | [i] | ||
7 | Linear OOA(2782, 442, F27, 2, 32) (dual of [(442, 2), 802, 33]-NRT-code) | [i] | ||
8 | Linear OOA(2783, 448, F27, 2, 32) (dual of [(448, 2), 813, 33]-NRT-code) | [i] | ||
9 | Linear OOA(2784, 450, F27, 2, 32) (dual of [(450, 2), 816, 33]-NRT-code) | [i] | ||
10 | Linear OOA(2785, 454, F27, 2, 32) (dual of [(454, 2), 823, 33]-NRT-code) | [i] | ||
11 | Linear OOA(2786, 460, F27, 2, 32) (dual of [(460, 2), 834, 33]-NRT-code) | [i] | ||
12 | Linear OOA(2787, 462, F27, 2, 32) (dual of [(462, 2), 837, 33]-NRT-code) | [i] | ||
13 | Linear OOA(2789, 468, F27, 2, 32) (dual of [(468, 2), 847, 33]-NRT-code) | [i] | ||
14 | OOA(2782, 448, S27, 2, 32) | [i] | ||
15 | Digital (28, 60, 313)-net over F27 | [i] | Embedding of OOA with Gilbert–Varšamov Bound |