Information on Result #894488

Linear OOA(2240, 4194373, F2, 2, 19) (dual of [(4194373, 2), 8388506, 20]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(232, 72, F2, 2, 9) (dual of [(72, 2), 112, 10]-NRT-code), using
    • OOA 2-folding [i] based on linear OA(232, 144, F2, 9) (dual of [144, 112, 10]-code), using
      • discarding factors / shortening the dual code based on linear OA(232, 145, F2, 9) (dual of [145, 113, 10]-code), using
        • adding a parity check bit [i] based on linear OA(231, 144, F2, 8) (dual of [144, 113, 9]-code), using
          • construction XX applied to C1 = C({0,1,3,63}), C2 = C([1,5]), C3 = C1 + C2 = C([1,3]), and C∩ = C1 ∩ C2 = C({0,1,3,5,63}) [i] based on
            1. linear OA(222, 127, F2, 7) (dual of [127, 105, 8]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,63}, and minimum distance d ≥ |{−2,−1,…,4}|+1 = 8 (BCH-bound) [i]
            2. linear OA(221, 127, F2, 6) (dual of [127, 106, 7]-code), using the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,6], and designed minimum distance d ≥ |I|+1 = 7 [i]
            3. linear OA(229, 127, F2, 9) (dual of [127, 98, 10]-code), using the primitive cyclic code C(A) with length 127 = 27−1, defining set A = {0,1,3,5,63}, and minimum distance d ≥ |{−2,−1,…,6}|+1 = 10 (BCH-bound) [i]
            4. linear OA(214, 127, F2, 4) (dual of [127, 113, 5]-code), using the primitive narrow-sense BCH-code C(I) with length 127 = 27−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 5 [i]
            5. linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
            6. linear OA(21, 8, F2, 1) (dual of [8, 7, 2]-code), using
  2. linear OOA(2208, 4194301, F2, 2, 19) (dual of [(4194301, 2), 8388394, 20]-NRT-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t.

Other Results with Identical Parameters

None.

Depending Results

None.