Information on Result #899510

Linear OOA(2532, 341, F25, 2, 13) (dual of [(341, 2), 650, 14]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(257, 27, F25, 2, 6) (dual of [(27, 2), 47, 7]-NRT-code), using
  2. linear OOA(2525, 314, F25, 2, 13) (dual of [(314, 2), 603, 14]-NRT-code), using
    • OOA 2-folding [i] based on linear OA(2525, 628, F25, 13) (dual of [628, 603, 14]-code), using
      • construction XX applied to C1 = C([623,10]), C2 = C([0,11]), C3 = C1 + C2 = C([0,10]), and C∩ = C1 ∩ C2 = C([623,11]) [i] based on
        1. linear OA(2523, 624, F25, 12) (dual of [624, 601, 13]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,10}, and designed minimum distance d ≥ |I|+1 = 13 [i]
        2. linear OA(2523, 624, F25, 12) (dual of [624, 601, 13]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
        3. linear OA(2525, 624, F25, 13) (dual of [624, 599, 14]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,11}, and designed minimum distance d ≥ |I|+1 = 14 [i]
        4. linear OA(2521, 624, F25, 11) (dual of [624, 603, 12]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,10], and designed minimum distance d ≥ |I|+1 = 12 [i]
        5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
        6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.