Information on Result #899703

Linear OOA(2543, 342, F25, 2, 17) (dual of [(342, 2), 641, 18]-NRT-code), using (u, u+v)-construction based on
  1. linear OOA(2510, 28, F25, 2, 8) (dual of [(28, 2), 46, 9]-NRT-code), using
  2. linear OOA(2533, 314, F25, 2, 17) (dual of [(314, 2), 595, 18]-NRT-code), using
    • OOA 2-folding [i] based on linear OA(2533, 628, F25, 17) (dual of [628, 595, 18]-code), using
      • construction XX applied to C1 = C([623,14]), C2 = C([0,15]), C3 = C1 + C2 = C([0,14]), and C∩ = C1 ∩ C2 = C([623,15]) [i] based on
        1. linear OA(2531, 624, F25, 16) (dual of [624, 593, 17]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,14}, and designed minimum distance d ≥ |I|+1 = 17 [i]
        2. linear OA(2531, 624, F25, 16) (dual of [624, 593, 17]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,15], and designed minimum distance d ≥ |I|+1 = 17 [i]
        3. linear OA(2533, 624, F25, 17) (dual of [624, 591, 18]-code), using the primitive BCH-code C(I) with length 624 = 252−1, defining interval I = {−1,0,…,15}, and designed minimum distance d ≥ |I|+1 = 18 [i]
        4. linear OA(2529, 624, F25, 15) (dual of [624, 595, 16]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 624 = 252−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
        5. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code), using
        6. linear OA(250, 2, F25, 0) (dual of [2, 2, 1]-code) (see above)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

None.