Best Known (48, 48+12, s)-Nets in Base 128
(48, 48+12, 1414633)-Net over F128 — Constructive and digital
Digital (48, 60, 1414633)-net over F128, using
- (u, u+v)-construction [i] based on
- digital (9, 15, 16533)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 129)-net over F128, using
- s-reduction based on digital (0, 0, s)-net over F128 with arbitrarily large s, using
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 1, 129)-net over F128, using
- s-reduction based on digital (0, 1, s)-net over F128 with arbitrarily large s, using
- digital (0, 1, 129)-net over F128 (see above)
- digital (0, 1, 129)-net over F128 (see above)
- digital (0, 2, 129)-net over F128, using
- digital (0, 3, 129)-net over F128, using
- net from sequence [i] based on digital (0, 128)-sequence over F128, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 0 and N(F) ≥ 129, using
- the rational function field F128(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 128)-sequence over F128, using
- digital (1, 7, 150)-net over F128, using
- net from sequence [i] based on digital (1, 149)-sequence over F128, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 1 and N(F) ≥ 150, using
- net from sequence [i] based on digital (1, 149)-sequence over F128, using
- digital (0, 0, 129)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- digital (33, 45, 1398100)-net over F128, using
- net defined by OOA [i] based on linear OOA(12845, 1398100, F128, 12, 12) (dual of [(1398100, 12), 16777155, 13]-NRT-code), using
- OA 6-folding and stacking [i] based on linear OA(12845, 8388600, F128, 12) (dual of [8388600, 8388555, 13]-code), using
- discarding factors / shortening the dual code based on linear OA(12845, large, F128, 12) (dual of [large, large−45, 13]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 9256395 | 1284−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
- discarding factors / shortening the dual code based on linear OA(12845, large, F128, 12) (dual of [large, large−45, 13]-code), using
- OA 6-folding and stacking [i] based on linear OA(12845, 8388600, F128, 12) (dual of [8388600, 8388555, 13]-code), using
- net defined by OOA [i] based on linear OOA(12845, 1398100, F128, 12, 12) (dual of [(1398100, 12), 16777155, 13]-NRT-code), using
- digital (9, 15, 16533)-net over F128, using
(48, 48+12, 2796200)-Net in Base 128 — Constructive
(48, 60, 2796200)-net in base 128, using
- 1 times m-reduction [i] based on (48, 61, 2796200)-net in base 128, using
- net defined by OOA [i] based on OOA(12861, 2796200, S128, 14, 13), using
- OOA 3-folding and stacking with additional row [i] based on OOA(12861, 8388601, S128, 2, 13), using
- discarding factors based on OOA(12861, 8388602, S128, 2, 13), using
- discarding parts of the base [i] based on linear OOA(25653, 8388602, F256, 2, 13) (dual of [(8388602, 2), 16777151, 14]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(25616, 4194301, F256, 2, 6) (dual of [(4194301, 2), 8388586, 7]-NRT-code), using
- OOA 2-folding [i] based on linear OA(25616, 8388602, F256, 6) (dual of [8388602, 8388586, 7]-code), using
- discarding factors / shortening the dual code based on linear OA(25616, large, F256, 6) (dual of [large, large−16, 7]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 2563−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
- discarding factors / shortening the dual code based on linear OA(25616, large, F256, 6) (dual of [large, large−16, 7]-code), using
- OOA 2-folding [i] based on linear OA(25616, 8388602, F256, 6) (dual of [8388602, 8388586, 7]-code), using
- linear OOA(25637, 4194301, F256, 2, 13) (dual of [(4194301, 2), 8388565, 14]-NRT-code), using
- OOA 2-folding [i] based on linear OA(25637, 8388602, F256, 13) (dual of [8388602, 8388565, 14]-code), using
- discarding factors / shortening the dual code based on linear OA(25637, large, F256, 13) (dual of [large, large−37, 14]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 2563−1, defining interval I = [0,12], and designed minimum distance d ≥ |I|+1 = 14 [i]
- discarding factors / shortening the dual code based on linear OA(25637, large, F256, 13) (dual of [large, large−37, 14]-code), using
- OOA 2-folding [i] based on linear OA(25637, 8388602, F256, 13) (dual of [8388602, 8388565, 14]-code), using
- linear OOA(25616, 4194301, F256, 2, 6) (dual of [(4194301, 2), 8388586, 7]-NRT-code), using
- (u, u+v)-construction [i] based on
- discarding parts of the base [i] based on linear OOA(25653, 8388602, F256, 2, 13) (dual of [(8388602, 2), 16777151, 14]-NRT-code), using
- discarding factors based on OOA(12861, 8388602, S128, 2, 13), using
- OOA 3-folding and stacking with additional row [i] based on OOA(12861, 8388601, S128, 2, 13), using
- net defined by OOA [i] based on OOA(12861, 2796200, S128, 14, 13), using
(48, 48+12, large)-Net over F128 — Digital
Digital (48, 60, large)-net over F128, using
- 6 times m-reduction [i] based on digital (48, 66, large)-net over F128, using
(48, 48+12, large)-Net in Base 128 — Upper bound on s
There is no (48, 60, large)-net in base 128, because
- 10 times m-reduction [i] would yield (48, 50, large)-net in base 128, but