Best Known (59, 59+15, s)-Nets in Base 128
(59, 59+15, 1214904)-Net over F128 — Constructive and digital
Digital (59, 74, 1214904)-net over F128, using
- (u, u+v)-construction [i] based on
- digital (10, 17, 16533)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 129)-net over F128, using
- s-reduction based on digital (0, 0, s)-net over F128 with arbitrarily large s, using
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 0, 129)-net over F128 (see above)
- digital (0, 1, 129)-net over F128, using
- s-reduction based on digital (0, 1, s)-net over F128 with arbitrarily large s, using
- digital (0, 1, 129)-net over F128 (see above)
- digital (0, 1, 129)-net over F128 (see above)
- digital (0, 1, 129)-net over F128 (see above)
- digital (0, 2, 129)-net over F128, using
- digital (0, 3, 129)-net over F128, using
- net from sequence [i] based on digital (0, 128)-sequence over F128, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 0 and N(F) ≥ 129, using
- the rational function field F128(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 128)-sequence over F128, using
- digital (1, 8, 150)-net over F128, using
- net from sequence [i] based on digital (1, 149)-sequence over F128, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 1 and N(F) ≥ 150, using
- net from sequence [i] based on digital (1, 149)-sequence over F128, using
- digital (0, 0, 129)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- digital (42, 57, 1198371)-net over F128, using
- net defined by OOA [i] based on linear OOA(12857, 1198371, F128, 15, 15) (dual of [(1198371, 15), 17975508, 16]-NRT-code), using
- OOA 7-folding and stacking with additional row [i] based on linear OA(12857, 8388598, F128, 15) (dual of [8388598, 8388541, 16]-code), using
- discarding factors / shortening the dual code based on linear OA(12857, large, F128, 15) (dual of [large, large−57, 16]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 15790321 | 1288−1, defining interval I = [0,7], and minimum distance d ≥ |{−7,−6,…,7}|+1 = 16 (BCH-bound) [i]
- discarding factors / shortening the dual code based on linear OA(12857, large, F128, 15) (dual of [large, large−57, 16]-code), using
- OOA 7-folding and stacking with additional row [i] based on linear OA(12857, 8388598, F128, 15) (dual of [8388598, 8388541, 16]-code), using
- net defined by OOA [i] based on linear OOA(12857, 1198371, F128, 15, 15) (dual of [(1198371, 15), 17975508, 16]-NRT-code), using
- digital (10, 17, 16533)-net over F128, using
(59, 59+15, 2396742)-Net in Base 128 — Constructive
(59, 74, 2396742)-net in base 128, using
- 1282 times duplication [i] based on (57, 72, 2396742)-net in base 128, using
- base change [i] based on digital (48, 63, 2396742)-net over F256, using
- 2561 times duplication [i] based on digital (47, 62, 2396742)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (12, 19, 2796200)-net over F256, using
- net defined by OOA [i] based on linear OOA(25619, 2796200, F256, 7, 7) (dual of [(2796200, 7), 19573381, 8]-NRT-code), using
- appending kth column [i] based on linear OOA(25619, 2796200, F256, 6, 7) (dual of [(2796200, 6), 16777181, 8]-NRT-code), using
- OOA 3-folding and stacking with additional row [i] based on linear OA(25619, 8388601, F256, 7) (dual of [8388601, 8388582, 8]-code), using
- discarding factors / shortening the dual code based on linear OA(25619, large, F256, 7) (dual of [large, large−19, 8]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 2563−1, defining interval I = [0,6], and designed minimum distance d ≥ |I|+1 = 8 [i]
- discarding factors / shortening the dual code based on linear OA(25619, large, F256, 7) (dual of [large, large−19, 8]-code), using
- OOA 3-folding and stacking with additional row [i] based on linear OA(25619, 8388601, F256, 7) (dual of [8388601, 8388582, 8]-code), using
- appending kth column [i] based on linear OOA(25619, 2796200, F256, 6, 7) (dual of [(2796200, 6), 16777181, 8]-NRT-code), using
- net defined by OOA [i] based on linear OOA(25619, 2796200, F256, 7, 7) (dual of [(2796200, 7), 19573381, 8]-NRT-code), using
- digital (28, 43, 1198371)-net over F256, using
- net defined by OOA [i] based on linear OOA(25643, 1198371, F256, 15, 15) (dual of [(1198371, 15), 17975522, 16]-NRT-code), using
- OOA 7-folding and stacking with additional row [i] based on linear OA(25643, 8388598, F256, 15) (dual of [8388598, 8388555, 16]-code), using
- discarding factors / shortening the dual code based on linear OA(25643, large, F256, 15) (dual of [large, large−43, 16]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 2563−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- discarding factors / shortening the dual code based on linear OA(25643, large, F256, 15) (dual of [large, large−43, 16]-code), using
- OOA 7-folding and stacking with additional row [i] based on linear OA(25643, 8388598, F256, 15) (dual of [8388598, 8388555, 16]-code), using
- net defined by OOA [i] based on linear OOA(25643, 1198371, F256, 15, 15) (dual of [(1198371, 15), 17975522, 16]-NRT-code), using
- digital (12, 19, 2796200)-net over F256, using
- (u, u+v)-construction [i] based on
- 2561 times duplication [i] based on digital (47, 62, 2396742)-net over F256, using
- base change [i] based on digital (48, 63, 2396742)-net over F256, using
(59, 59+15, large)-Net over F128 — Digital
Digital (59, 74, large)-net over F128, using
- t-expansion [i] based on digital (56, 74, large)-net over F128, using
- 3 times m-reduction [i] based on digital (56, 77, large)-net over F128, using
(59, 59+15, large)-Net in Base 128 — Upper bound on s
There is no (59, 74, large)-net in base 128, because
- 13 times m-reduction [i] would yield (59, 61, large)-net in base 128, but