Best Known (41−8, 41, s)-Nets in Base 128
(41−8, 41, 3145856)-Net over F128 — Constructive and digital
Digital (33, 41, 3145856)-net over F128, using
- (u, u+v)-construction [i] based on
- digital (8, 12, 1048706)-net over F128, using
- net defined by OOA [i] based on linear OOA(12812, 1048706, F128, 4, 4) (dual of [(1048706, 4), 4194812, 5]-NRT-code), using
- appending kth column [i] based on linear OOA(12812, 1048706, F128, 3, 4) (dual of [(1048706, 3), 3146106, 5]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(1282, 129, F128, 3, 2) (dual of [(129, 3), 385, 3]-NRT-code), using
- extended Reed–Solomon NRT-code RSe(3;385,128) [i]
- linear OOA(12810, 1048577, F128, 3, 4) (dual of [(1048577, 3), 3145721, 5]-NRT-code), using
- OA 2-folding and stacking [i] based on linear OA(12810, 2097154, F128, 4) (dual of [2097154, 2097144, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(12810, 2097155, F128, 4) (dual of [2097155, 2097145, 5]-code), using
- construction X applied to Ce(3) ⊂ Ce(2) [i] based on
- linear OA(12810, 2097152, F128, 4) (dual of [2097152, 2097142, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(1287, 2097152, F128, 3) (dual of [2097152, 2097145, 4]-code or 2097152-cap in PG(6,128)), using an extension Ce(2) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,2], and designed minimum distance d ≥ |I|+1 = 3 [i]
- linear OA(1280, 3, F128, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(1280, s, F128, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(3) ⊂ Ce(2) [i] based on
- discarding factors / shortening the dual code based on linear OA(12810, 2097155, F128, 4) (dual of [2097155, 2097145, 5]-code), using
- OA 2-folding and stacking [i] based on linear OA(12810, 2097154, F128, 4) (dual of [2097154, 2097144, 5]-code), using
- linear OOA(1282, 129, F128, 3, 2) (dual of [(129, 3), 385, 3]-NRT-code), using
- (u, u+v)-construction [i] based on
- appending kth column [i] based on linear OOA(12812, 1048706, F128, 3, 4) (dual of [(1048706, 3), 3146106, 5]-NRT-code), using
- net defined by OOA [i] based on linear OOA(12812, 1048706, F128, 4, 4) (dual of [(1048706, 4), 4194812, 5]-NRT-code), using
- digital (21, 29, 2097150)-net over F128, using
- net defined by OOA [i] based on linear OOA(12829, 2097150, F128, 8, 8) (dual of [(2097150, 8), 16777171, 9]-NRT-code), using
- OA 4-folding and stacking [i] based on linear OA(12829, 8388600, F128, 8) (dual of [8388600, 8388571, 9]-code), using
- discarding factors / shortening the dual code based on linear OA(12829, large, F128, 8) (dual of [large, large−29, 9]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 17895697 | 1284−1, defining interval I = [0,7], and designed minimum distance d ≥ |I|+1 = 9 [i]
- discarding factors / shortening the dual code based on linear OA(12829, large, F128, 8) (dual of [large, large−29, 9]-code), using
- OA 4-folding and stacking [i] based on linear OA(12829, 8388600, F128, 8) (dual of [8388600, 8388571, 9]-code), using
- net defined by OOA [i] based on linear OOA(12829, 2097150, F128, 8, 8) (dual of [(2097150, 8), 16777171, 9]-NRT-code), using
- digital (8, 12, 1048706)-net over F128, using
(41−8, 41, 4260096)-Net in Base 128 — Constructive
(33, 41, 4260096)-net in base 128, using
- 1281 times duplication [i] based on (32, 40, 4260096)-net in base 128, using
- base change [i] based on digital (27, 35, 4260096)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 16641)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 0, 16641)-net over F256 (see above)
- digital (0, 1, 16641)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 16641)-net over F256 (see above)
- digital (0, 1, 16641)-net over F256 (see above)
- digital (0, 1, 16641)-net over F256 (see above)
- digital (1, 3, 16641)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 16641)-net over F256 (see above)
- digital (2, 6, 16641)-net over F256, using
- s-reduction based on digital (2, 6, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2566, 32640, F256, 4, 4) (dual of [(32640, 4), 130554, 5]-NRT-code), using
- OA 2-folding and stacking [i] based on linear OA(2566, 65280, F256, 4) (dual of [65280, 65274, 5]-code), using
- 1 times truncation [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- OA 2-folding and stacking [i] based on linear OA(2566, 65280, F256, 4) (dual of [65280, 65274, 5]-code), using
- net defined by OOA [i] based on linear OOA(2566, 32640, F256, 4, 4) (dual of [(32640, 4), 130554, 5]-NRT-code), using
- s-reduction based on digital (2, 6, 32640)-net over F256, using
- digital (11, 19, 16641)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (0, 4, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- digital (7, 15, 16384)-net over F256, using
- net defined by OOA [i] based on linear OOA(25615, 16384, F256, 8, 8) (dual of [(16384, 8), 131057, 9]-NRT-code), using
- OA 4-folding and stacking [i] based on linear OA(25615, 65536, F256, 8) (dual of [65536, 65521, 9]-code), using
- an extension Ce(7) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,7], and designed minimum distance d ≥ |I|+1 = 8 [i]
- OA 4-folding and stacking [i] based on linear OA(25615, 65536, F256, 8) (dual of [65536, 65521, 9]-code), using
- net defined by OOA [i] based on linear OOA(25615, 16384, F256, 8, 8) (dual of [(16384, 8), 131057, 9]-NRT-code), using
- digital (0, 4, 257)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (0, 0, 16641)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- base change [i] based on digital (27, 35, 4260096)-net over F256, using
(41−8, 41, large)-Net over F128 — Digital
Digital (33, 41, large)-net over F128, using
- t-expansion [i] based on digital (32, 41, large)-net over F128, using
- 3 times m-reduction [i] based on digital (32, 44, large)-net over F128, using
(41−8, 41, large)-Net in Base 128 — Upper bound on s
There is no (33, 41, large)-net in base 128, because
- 6 times m-reduction [i] would yield (33, 35, large)-net in base 128, but