Best Known (43, 47, s)-Nets in Base 128
(43, 47, large)-Net over F128 — Constructive and digital
Digital (43, 47, large)-net over F128, using
- t-expansion [i] based on digital (41, 47, large)-net over F128, using
- 3 times m-reduction [i] based on digital (41, 50, large)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 524288)-net over F128, using
- s-reduction based on digital (0, 0, s)-net over F128 with arbitrarily large s, using
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 0, 524288)-net over F128 (see above)
- digital (0, 1, 524288)-net over F128, using
- s-reduction based on digital (0, 1, s)-net over F128 with arbitrarily large s, using
- digital (0, 1, 524288)-net over F128 (see above)
- digital (0, 1, 524288)-net over F128 (see above)
- digital (0, 1, 524288)-net over F128 (see above)
- digital (0, 1, 524288)-net over F128 (see above)
- digital (2, 4, 524288)-net over F128, using
- s-reduction based on digital (2, 4, 2113665)-net over F128, using
- digital (3, 6, 524288)-net over F128, using
- s-reduction based on digital (3, 6, 2130050)-net over F128, using
- net defined by OOA [i] based on linear OOA(1286, 2130050, F128, 3, 3) (dual of [(2130050, 3), 6390144, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(1286, 2130050, F128, 2, 3) (dual of [(2130050, 2), 4260094, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(1286, 2130050, F128, 3, 3) (dual of [(2130050, 3), 6390144, 4]-NRT-code), using
- s-reduction based on digital (3, 6, 2130050)-net over F128, using
- digital (6, 10, 524288)-net over F128, using
- s-reduction based on digital (6, 10, 1048577)-net over F128, using
- net defined by OOA [i] based on linear OOA(12810, 1048577, F128, 4, 4) (dual of [(1048577, 4), 4194298, 5]-NRT-code), using
- OA 2-folding and stacking [i] based on linear OA(12810, 2097154, F128, 4) (dual of [2097154, 2097144, 5]-code), using
- discarding factors / shortening the dual code based on linear OA(12810, 2097155, F128, 4) (dual of [2097155, 2097145, 5]-code), using
- construction X applied to Ce(3) ⊂ Ce(2) [i] based on
- linear OA(12810, 2097152, F128, 4) (dual of [2097152, 2097142, 5]-code), using an extension Ce(3) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,3], and designed minimum distance d ≥ |I|+1 = 4 [i]
- linear OA(1287, 2097152, F128, 3) (dual of [2097152, 2097145, 4]-code or 2097152-cap in PG(6,128)), using an extension Ce(2) of the primitive narrow-sense BCH-code C(I) with length 2097151 = 1283−1, defining interval I = [1,2], and designed minimum distance d ≥ |I|+1 = 3 [i]
- linear OA(1280, 3, F128, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(1280, s, F128, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(3) ⊂ Ce(2) [i] based on
- discarding factors / shortening the dual code based on linear OA(12810, 2097155, F128, 4) (dual of [2097155, 2097145, 5]-code), using
- OA 2-folding and stacking [i] based on linear OA(12810, 2097154, F128, 4) (dual of [2097154, 2097144, 5]-code), using
- net defined by OOA [i] based on linear OOA(12810, 1048577, F128, 4, 4) (dual of [(1048577, 4), 4194298, 5]-NRT-code), using
- s-reduction based on digital (6, 10, 1048577)-net over F128, using
- digital (16, 25, 524288)-net over F128, using
- net defined by OOA [i] based on linear OOA(12825, 524288, F128, 9, 9) (dual of [(524288, 9), 4718567, 10]-NRT-code), using
- OOA 4-folding and stacking with additional row [i] based on linear OA(12825, 2097153, F128, 9) (dual of [2097153, 2097128, 10]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 2097153 | 1286−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- OOA 4-folding and stacking with additional row [i] based on linear OA(12825, 2097153, F128, 9) (dual of [2097153, 2097128, 10]-code), using
- net defined by OOA [i] based on linear OOA(12825, 524288, F128, 9, 9) (dual of [(524288, 9), 4718567, 10]-NRT-code), using
- digital (0, 0, 524288)-net over F128, using
- generalized (u, u+v)-construction [i] based on
- 3 times m-reduction [i] based on digital (41, 50, large)-net over F128, using
(43, 47, large)-Net in Base 128 — Upper bound on s
There is no (43, 47, large)-net in base 128, because
- 2 times m-reduction [i] would yield (43, 45, large)-net in base 128, but