Best Known (183−29, 183, s)-Nets in Base 2
(183−29, 183, 585)-Net over F2 — Constructive and digital
Digital (154, 183, 585)-net over F2, using
- net defined by OOA [i] based on linear OOA(2183, 585, F2, 29, 29) (dual of [(585, 29), 16782, 30]-NRT-code), using
- OOA 14-folding and stacking with additional row [i] based on linear OA(2183, 8191, F2, 29) (dual of [8191, 8008, 30]-code), using
- discarding factors / shortening the dual code based on linear OA(2183, 8192, F2, 29) (dual of [8192, 8009, 30]-code), using
- an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 8191 = 213−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- discarding factors / shortening the dual code based on linear OA(2183, 8192, F2, 29) (dual of [8192, 8009, 30]-code), using
- OOA 14-folding and stacking with additional row [i] based on linear OA(2183, 8191, F2, 29) (dual of [8191, 8008, 30]-code), using
(183−29, 183, 1689)-Net over F2 — Digital
Digital (154, 183, 1689)-net over F2, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(2183, 1689, F2, 4, 29) (dual of [(1689, 4), 6573, 30]-NRT-code), using
- discarding factors / shortening the dual code based on linear OOA(2183, 2048, F2, 4, 29) (dual of [(2048, 4), 8009, 30]-NRT-code), using
- OOA 4-folding [i] based on linear OA(2183, 8192, F2, 29) (dual of [8192, 8009, 30]-code), using
- an extension Ce(28) of the primitive narrow-sense BCH-code C(I) with length 8191 = 213−1, defining interval I = [1,28], and designed minimum distance d ≥ |I|+1 = 29 [i]
- OOA 4-folding [i] based on linear OA(2183, 8192, F2, 29) (dual of [8192, 8009, 30]-code), using
- discarding factors / shortening the dual code based on linear OOA(2183, 2048, F2, 4, 29) (dual of [(2048, 4), 8009, 30]-NRT-code), using
(183−29, 183, 49507)-Net in Base 2 — Upper bound on s
There is no (154, 183, 49508)-net in base 2, because
- 1 times m-reduction [i] would yield (154, 182, 49508)-net in base 2, but
- the generalized Rao bound for nets shows that 2m ≥ 6 131456 213979 328084 603601 442923 849674 506758 316472 054392 > 2182 [i]