Best Known (34, 34+10, s)-Nets in Base 256
(34, 34+10, 3355904)-Net over F256 — Constructive and digital
Digital (34, 44, 3355904)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 13109)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 0, 13109)-net over F256 (see above)
- digital (0, 1, 13109)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 13109)-net over F256 (see above)
- digital (0, 1, 13109)-net over F256 (see above)
- digital (0, 1, 13109)-net over F256 (see above)
- digital (0, 1, 13109)-net over F256 (see above)
- digital (1, 3, 13109)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 13109)-net over F256 (see above)
- digital (1, 4, 13109)-net over F256, using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(2564, 65537, F256, 2, 3) (dual of [(65537, 2), 131070, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(2564, 65537, F256, 3, 3) (dual of [(65537, 3), 196607, 4]-NRT-code), using
- s-reduction based on digital (1, 4, 65537)-net over F256, using
- digital (2, 7, 13109)-net over F256, using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- OOA 2-folding and stacking with additional row [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- net defined by OOA [i] based on linear OOA(2567, 32640, F256, 5, 5) (dual of [(32640, 5), 163193, 6]-NRT-code), using
- s-reduction based on digital (2, 7, 32640)-net over F256, using
- digital (12, 22, 13109)-net over F256, using
- net defined by OOA [i] based on linear OOA(25622, 13109, F256, 10, 10) (dual of [(13109, 10), 131068, 11]-NRT-code), using
- OA 5-folding and stacking [i] based on linear OA(25622, 65545, F256, 10) (dual of [65545, 65523, 11]-code), using
- discarding factors / shortening the dual code based on linear OA(25622, 65547, F256, 10) (dual of [65547, 65525, 11]-code), using
- construction X applied to Ce(9) ⊂ Ce(5) [i] based on
- linear OA(25619, 65536, F256, 10) (dual of [65536, 65517, 11]-code), using an extension Ce(9) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,9], and designed minimum distance d ≥ |I|+1 = 10 [i]
- linear OA(25611, 65536, F256, 6) (dual of [65536, 65525, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(2563, 11, F256, 3) (dual of [11, 8, 4]-code or 11-arc in PG(2,256) or 11-cap in PG(2,256)), using
- discarding factors / shortening the dual code based on linear OA(2563, 256, F256, 3) (dual of [256, 253, 4]-code or 256-arc in PG(2,256) or 256-cap in PG(2,256)), using
- Reed–Solomon code RS(253,256) [i]
- discarding factors / shortening the dual code based on linear OA(2563, 256, F256, 3) (dual of [256, 253, 4]-code or 256-arc in PG(2,256) or 256-cap in PG(2,256)), using
- construction X applied to Ce(9) ⊂ Ce(5) [i] based on
- discarding factors / shortening the dual code based on linear OA(25622, 65547, F256, 10) (dual of [65547, 65525, 11]-code), using
- OA 5-folding and stacking [i] based on linear OA(25622, 65545, F256, 10) (dual of [65545, 65523, 11]-code), using
- net defined by OOA [i] based on linear OOA(25622, 13109, F256, 10, 10) (dual of [(13109, 10), 131068, 11]-NRT-code), using
- digital (0, 0, 13109)-net over F256, using
(34, 34+10, large)-Net over F256 — Digital
Digital (34, 44, large)-net over F256, using
- t-expansion [i] based on digital (33, 44, large)-net over F256, using
- 4 times m-reduction [i] based on digital (33, 48, large)-net over F256, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(25648, large, F256, 15) (dual of [large, large−48, 16]-code), using
- 5 times code embedding in larger space [i] based on linear OA(25643, large, F256, 15) (dual of [large, large−43, 16]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 2563−1, defining interval I = [0,14], and designed minimum distance d ≥ |I|+1 = 16 [i]
- 5 times code embedding in larger space [i] based on linear OA(25643, large, F256, 15) (dual of [large, large−43, 16]-code), using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(25648, large, F256, 15) (dual of [large, large−48, 16]-code), using
- 4 times m-reduction [i] based on digital (33, 48, large)-net over F256, using
(34, 34+10, large)-Net in Base 256 — Upper bound on s
There is no (34, 44, large)-net in base 256, because
- 8 times m-reduction [i] would yield (34, 36, large)-net in base 256, but