Best Known (66−44, 66, s)-Nets in Base 256
(66−44, 66, 514)-Net over F256 — Constructive and digital
Digital (22, 66, 514)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (0, 22, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- digital (0, 44, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256 (see above)
- digital (0, 22, 257)-net over F256, using
(66−44, 66, 595696)-Net in Base 256 — Upper bound on s
There is no (22, 66, 595697)-net in base 256, because
- the generalized Rao bound for nets shows that 256m ≥ 878 711387 895136 661101 084961 350422 852846 977052 234823 845803 662983 952997 191312 480285 663801 130675 731013 020775 341210 755559 908978 449569 666057 347359 964693 049222 092496 > 25666 [i]