Best Known (31−8, 31, s)-Nets in Base 256
(31−8, 31, 4194304)-Net over F256 — Constructive and digital
Digital (23, 31, 4194304)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 16384)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 0, 16384)-net over F256 (see above)
- digital (0, 1, 16384)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 16384)-net over F256 (see above)
- digital (0, 1, 16384)-net over F256 (see above)
- digital (0, 1, 16384)-net over F256 (see above)
- digital (1, 3, 16384)-net over F256, using
- s-reduction based on digital (1, 3, 65793)-net over F256, using
- digital (1, 3, 16384)-net over F256 (see above)
- digital (2, 6, 16384)-net over F256, using
- s-reduction based on digital (2, 6, 32640)-net over F256, using
- net defined by OOA [i] based on linear OOA(2566, 32640, F256, 4, 4) (dual of [(32640, 4), 130554, 5]-NRT-code), using
- OA 2-folding and stacking [i] based on linear OA(2566, 65280, F256, 4) (dual of [65280, 65274, 5]-code), using
- 1 times truncation [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- OA 2-folding and stacking [i] based on linear OA(2566, 65280, F256, 4) (dual of [65280, 65274, 5]-code), using
- net defined by OOA [i] based on linear OOA(2566, 32640, F256, 4, 4) (dual of [(32640, 4), 130554, 5]-NRT-code), using
- s-reduction based on digital (2, 6, 32640)-net over F256, using
- digital (7, 15, 16384)-net over F256, using
- net defined by OOA [i] based on linear OOA(25615, 16384, F256, 8, 8) (dual of [(16384, 8), 131057, 9]-NRT-code), using
- OA 4-folding and stacking [i] based on linear OA(25615, 65536, F256, 8) (dual of [65536, 65521, 9]-code), using
- an extension Ce(7) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,7], and designed minimum distance d ≥ |I|+1 = 8 [i]
- OA 4-folding and stacking [i] based on linear OA(25615, 65536, F256, 8) (dual of [65536, 65521, 9]-code), using
- net defined by OOA [i] based on linear OOA(25615, 16384, F256, 8, 8) (dual of [(16384, 8), 131057, 9]-NRT-code), using
- digital (0, 0, 16384)-net over F256, using
(31−8, 31, large)-Net over F256 — Digital
Digital (23, 31, large)-net over F256, using
- 3 times m-reduction [i] based on digital (23, 34, large)-net over F256, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(25634, large, F256, 11) (dual of [large, large−34, 12]-code), using
- strength reduction [i] based on linear OA(25634, large, F256, 12) (dual of [large, large−34, 13]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 16777215 = 2563−1, defining interval I = [0,11], and designed minimum distance d ≥ |I|+1 = 13 [i]
- strength reduction [i] based on linear OA(25634, large, F256, 12) (dual of [large, large−34, 13]-code), using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(25634, large, F256, 11) (dual of [large, large−34, 12]-code), using
(31−8, 31, large)-Net in Base 256 — Upper bound on s
There is no (23, 31, large)-net in base 256, because
- 6 times m-reduction [i] would yield (23, 25, large)-net in base 256, but