Best Known (14, 23, s)-Nets in Base 256
(14, 23, 65792)-Net over F256 — Constructive and digital
Digital (14, 23, 65792)-net over F256, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 257)-net over F256, using
- s-reduction based on digital (0, 0, s)-net over F256 with arbitrarily large s, using
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 0, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256, using
- s-reduction based on digital (0, 1, s)-net over F256 with arbitrarily large s, using
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 1, 257)-net over F256 (see above)
- digital (0, 2, 257)-net over F256, using
- digital (0, 3, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- digital (0, 4, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256 (see above)
- digital (0, 9, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256 (see above)
- digital (0, 0, 257)-net over F256, using
(14, 23, 130818)-Net over F256 — Digital
Digital (14, 23, 130818)-net over F256, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(25623, 130818, F256, 9) (dual of [130818, 130795, 10]-code), using
- (u, u+v)-construction [i] based on
- linear OA(2566, 65280, F256, 4) (dual of [65280, 65274, 5]-code), using
- 1 times truncation [i] based on linear OA(2567, 65281, F256, 5) (dual of [65281, 65274, 6]-code), using
- linear OA(25617, 65538, F256, 9) (dual of [65538, 65521, 10]-code), using
- construction X applied to Ce(8) ⊂ Ce(7) [i] based on
- linear OA(25617, 65536, F256, 9) (dual of [65536, 65519, 10]-code), using an extension Ce(8) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,8], and designed minimum distance d ≥ |I|+1 = 9 [i]
- linear OA(25615, 65536, F256, 8) (dual of [65536, 65521, 9]-code), using an extension Ce(7) of the primitive narrow-sense BCH-code C(I) with length 65535 = 2562−1, defining interval I = [1,7], and designed minimum distance d ≥ |I|+1 = 8 [i]
- linear OA(2560, 2, F256, 0) (dual of [2, 2, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(2560, s, F256, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(8) ⊂ Ce(7) [i] based on
- linear OA(2566, 65280, F256, 4) (dual of [65280, 65274, 5]-code), using
- (u, u+v)-construction [i] based on
(14, 23, large)-Net in Base 256 — Upper bound on s
There is no (14, 23, large)-net in base 256, because
- 7 times m-reduction [i] would yield (14, 16, large)-net in base 256, but