Best Known (21, 63, s)-Nets in Base 256
(21, 63, 514)-Net over F256 — Constructive and digital
Digital (21, 63, 514)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (0, 21, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- generalized Faure sequence [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F256 with g(F) = 0 and N(F) ≥ 257, using
- the rational function field F256(x) [i]
- Niederreiter sequence [i]
- net from sequence [i] based on digital (0, 256)-sequence over F256, using
- digital (0, 42, 257)-net over F256, using
- net from sequence [i] based on digital (0, 256)-sequence over F256 (see above)
- digital (0, 21, 257)-net over F256, using
(21, 63, 571037)-Net in Base 256 — Upper bound on s
There is no (21, 63, 571038)-net in base 256, because
- the generalized Rao bound for nets shows that 256m ≥ 52 375249 355524 872475 008646 118035 060621 985328 111046 536525 221477 780038 514963 050972 805630 186990 121519 238233 562358 628942 681131 388235 448692 159605 089492 379991 > 25663 [i]