Best Known (23, 65, s)-Nets in Base 256
(23, 65, 516)-Net over F256 — Constructive and digital
Digital (23, 65, 516)-net over F256, using
- (u, u+v)-construction [i] based on
- digital (1, 22, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256, using
- digital (1, 43, 258)-net over F256, using
- net from sequence [i] based on digital (1, 257)-sequence over F256 (see above)
- digital (1, 22, 258)-net over F256, using
(23, 65, 578)-Net over F256 — Digital
Digital (23, 65, 578)-net over F256, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OOA(25665, 578, F256, 6, 42) (dual of [(578, 6), 3403, 43]-NRT-code), using
- (u, u+v)-construction [i] based on
- linear OOA(25622, 289, F256, 6, 21) (dual of [(289, 6), 1712, 22]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(6;F,1712P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289, using
- linear OOA(25643, 289, F256, 6, 42) (dual of [(289, 6), 1691, 43]-NRT-code), using
- extended algebraic-geometric NRT-code AGe(6;F,1691P) [i] based on function field F/F256 with g(F) = 1 and N(F) ≥ 289 (see above)
- linear OOA(25622, 289, F256, 6, 21) (dual of [(289, 6), 1712, 22]-NRT-code), using
- (u, u+v)-construction [i] based on
(23, 65, 968331)-Net in Base 256 — Upper bound on s
There is no (23, 65, 968332)-net in base 256, because
- the generalized Rao bound for nets shows that 256m ≥ 3 432454 595904 680950 894862 454948 359997 005102 161847 719671 966019 633090 517858 408964 244583 502418 971698 434028 986932 694715 309124 154625 774084 644309 908181 702281 426736 > 25665 [i]