Best Known (63, s)-Sequences in Base 27
(63, 113)-Sequence over F27 — Constructive and digital
Digital (63, 113)-sequence over F27, using
- t-expansion [i] based on digital (23, 113)-sequence over F27, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F27 with g(F) = 23 and N(F) ≥ 114, using
(63, 324)-Sequence over F27 — Digital
Digital (63, 324)-sequence over F27, using
- t-expansion [i] based on digital (48, 324)-sequence over F27, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F27 with g(F) = 48 and N(F) ≥ 325, using
(63, 1695)-Sequence in Base 27 — Upper bound on s
There is no (63, 1696)-sequence in base 27, because
- net from sequence [i] would yield (63, m, 1697)-net in base 27 for arbitrarily large m, but
- m-reduction [i] would yield (63, 3391, 1697)-net in base 27, but
- extracting embedded OOA [i] would yield OOA(273391, 1697, S27, 2, 3328), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 2009 829992 816411 779217 713001 394855 835486 132076 960676 576304 141854 712436 891843 982260 010101 155400 342229 442583 365957 709744 337781 409289 604141 990897 222960 594306 143972 982360 565210 169780 279332 060138 794945 240417 764920 415843 899034 806209 900118 374171 006465 109083 283872 608603 347443 147289 515035 199923 429512 334570 953956 728269 162996 371240 446855 632871 896677 836173 403126 123849 794099 591439 016000 467062 472764 268591 852865 419618 009290 874473 446765 304458 331809 184555 548636 299525 953443 921139 749545 622664 808392 517649 683820 769686 896676 116380 415001 384078 175875 845951 999503 883474 834733 174974 858459 831646 065459 653371 070241 197812 220306 153173 976753 807484 041391 374450 655829 176046 901990 146827 340552 419840 639931 570933 138244 713292 535423 134703 334550 098087 006396 478272 551105 518400 309134 378797 960710 236816 306215 280781 841568 555921 537802 096392 659652 882319 665319 828531 370795 832501 599309 411773 307531 812672 115464 041597 452844 051940 618519 553126 069505 579317 089603 437069 504496 994633 626930 081749 618630 124996 723469 373198 039737 592108 895015 568857 834887 725265 449993 746798 744649 004661 790770 181707 356354 549826 217283 480595 059370 870308 449441 712334 652040 529336 676531 648853 436533 078329 030959 501019 066853 546230 739525 165844 881991 189399 097309 533366 082305 330603 560552 620592 893104 066747 631176 128343 400307 478835 540506 153403 237567 080315 265396 057481 864312 925134 514350 405183 104439 474005 322180 289091 596198 788312 069110 083894 982796 397110 251243 595602 472375 553868 988557 091793 861697 934585 806175 599628 800681 629098 649377 821948 796521 864712 687110 469046 877830 491293 547730 136523 260000 519576 908058 141757 396420 549528 883884 034066 499281 556347 194383 299306 185061 329421 995217 315144 570784 635500 956055 041444 207904 343922 869256 152547 005491 282901 456118 879549 980520 906219 624210 394892 051520 179011 062674 999217 370498 883266 151494 092922 841696 497400 687181 302426 468562 118989 609074 595705 974056 190592 601128 168464 883895 370970 332326 420482 718911 042958 056749 931946 983663 090715 151621 206204 904292 776104 749934 399483 111586 138385 701175 198615 475727 167376 964853 619327 367777 639998 826235 380508 588347 209756 388865 112916 197242 658218 717896 598012 797193 102803 974397 725168 767871 151151 346327 400892 537393 040934 388501 771775 430097 766249 522747 117850 391233 505374 337773 555365 649930 098915 924012 855120 784317 054757 910212 615333 441027 772482 747511 459925 914728 149905 189373 495374 270724 813629 740625 772965 775298 763121 488708 713189 706121 259161 804520 309799 306851 694716 471678 038792 135478 025781 943637 466372 271586 249622 856519 305820 817528 058697 683359 161475 716895 846829 328347 385209 463842 482243 902433 227725 368708 122447 793786 394212 026929 807960 269300 464306 623648 045407 511725 721246 752052 141832 537190 716957 999701 687365 000778 017103 203104 972469 835083 539245 659315 200952 726653 717228 600507 774909 282796 114341 897790 359920 197107 657306 289079 281954 081600 783502 063912 272965 986050 092065 023295 151298 866311 726047 455032 839764 683563 778430 089561 863398 429758 491872 513420 693470 657778 836448 039264 022696 707134 799690 268256 600453 336359 699709 402673 665046 572388 037928 994890 926041 524209 532513 477484 599352 362343 297634 648308 366085 826224 627065 209630 952374 249841 710458 200217 413857 990004 641798 038042 414904 714291 572741 211855 556474 121225 488479 738380 753491 062567 735812 097564 335727 984396 255733 950274 016260 573286 312029 875460 955492 318206 145416 411309 315913 912356 078584 777366 685670 880471 688139 408460 250215 631919 983106 658161 897937 051162 569657 654711 670638 043641 448005 025984 172221 448482 642765 753642 638767 204710 654691 670780 859676 118359 954056 267125 893933 088346 340726 290640 005032 767330 621689 923348 385444 772124 721432 838405 241812 144957 418245 550907 537061 901622 430795 386084 987766 900615 525804 110811 458190 121141 197532 791884 630545 809079 653109 660151 742313 165482 426262 574769 269651 136579 832144 234947 297232 667405 237284 215596 575384 486790 331991 502339 180651 539941 831505 319704 226847 916542 821769 990326 714817 190394 932502 348447 876005 738819 442560 693732 808329 981513 692573 493431 418314 905874 746239 840720 424490 420427 484348 188809 107648 489519 907956 046995 287836 507541 836735 365854 165182 628923 636607 655488 418698 578568 307313 607835 851336 259233 129757 821184 099461 858886 720895 334100 911408 274339 056023 751297 798214 976910 996969 981343 770046 522830 607903 148421 574363 639099 751012 846835 549650 436247 922952 185318 263576 627043 937599 367600 881098 236571 516575 371415 541273 378754 516874 720486 313280 948606 302119 207776 451534 051667 014261 560508 248988 322992 724288 847076 187895 204436 059483 286068 823309 705044 443800 926680 186512 234796 446117 494096 138723 151525 970113 783427 703403 371175 258630 130732 933055 683505 742619 438532 844406 202599 411013 177444 620293 722269 135561 290964 398360 887788 286936 637783 851141 230719 793789 829916 066085 985015 066987 746019 848240 454247 216403 038480 406659 699471 757033 536602 584608 648776 947714 860850 413268 113327 113491 876080 758960 368915 864833 798908 916359 237750 968392 818055 061771 055746 426612 025325 730614 653807 427076 877411 934503 014284 970611 292714 001958 374548 066721 127287 893216 103306 746091 968039 341301 854752 594686 774140 074287 805045 904665 382517 893055 848469 605603 554294 588967 117786 192698 906637 063574 252037 515651 / 3329 > 273391 [i]
- extracting embedded OOA [i] would yield OOA(273391, 1697, S27, 2, 3328), but
- m-reduction [i] would yield (63, 3391, 1697)-net in base 27, but