Best Known (34, 40, s)-Nets in Base 27
(34, 40, 6144283)-Net over F27 — Constructive and digital
Digital (34, 40, 6144283)-net over F27, using
- generalized (u, u+v)-construction [i] based on
- digital (3, 5, 551881)-net over F27, using
- digital (6, 9, 2796201)-net over F27, using
- s-reduction based on digital (6, 9, large)-net over F27, using
- net defined by OOA [i] based on linear OOA(279, large, F27, 3, 3), using
- appending kth column [i] based on linear OOA(279, large, F27, 2, 3), using
- OAs with strength 3, b ≠ 2, and m > 3 are always embeddable [i] based on linear OA(279, large, F27, 3) (dual of [large, large−9, 4]-code), using
- appending kth column [i] based on linear OOA(279, large, F27, 2, 3), using
- net defined by OOA [i] based on linear OOA(279, large, F27, 3, 3), using
- s-reduction based on digital (6, 9, large)-net over F27, using
- digital (20, 26, 2796201)-net over F27, using
- net defined by OOA [i] based on linear OOA(2726, 2796201, F27, 6, 6) (dual of [(2796201, 6), 16777180, 7]-NRT-code), using
- OA 3-folding and stacking [i] based on linear OA(2726, large, F27, 6) (dual of [large, large−26, 7]-code), using
- the primitive expurgated narrow-sense BCH-code C(I) with length 14348906 = 275−1, defining interval I = [0,5], and designed minimum distance d ≥ |I|+1 = 7 [i]
- OA 3-folding and stacking [i] based on linear OA(2726, large, F27, 6) (dual of [large, large−26, 7]-code), using
- net defined by OOA [i] based on linear OOA(2726, 2796201, F27, 6, 6) (dual of [(2796201, 6), 16777180, 7]-NRT-code), using
(34, 40, large)-Net in Base 27 — Constructive
(34, 40, large)-net in base 27, using
- base change [i] based on digital (24, 30, large)-net over F81, using
- 811 times duplication [i] based on digital (23, 29, large)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- digital (0, 0, 177148)-net over F81, using
- s-reduction based on digital (0, 0, s)-net over F81 with arbitrarily large s, using
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 0, 177148)-net over F81 (see above)
- digital (0, 1, 177148)-net over F81, using
- s-reduction based on digital (0, 1, s)-net over F81 with arbitrarily large s, using
- digital (0, 1, 177148)-net over F81 (see above)
- digital (0, 1, 177148)-net over F81 (see above)
- digital (2, 4, 177148)-net over F81, using
- s-reduction based on digital (2, 4, 538084)-net over F81, using
- digital (3, 6, 177148)-net over F81, using
- s-reduction based on digital (3, 6, 538248)-net over F81, using
- net defined by OOA [i] based on linear OOA(816, 538248, F81, 3, 3) (dual of [(538248, 3), 1614738, 4]-NRT-code), using
- appending kth column [i] based on linear OOA(816, 538248, F81, 2, 3) (dual of [(538248, 2), 1076490, 4]-NRT-code), using
- net defined by OOA [i] based on linear OOA(816, 538248, F81, 3, 3) (dual of [(538248, 3), 1614738, 4]-NRT-code), using
- s-reduction based on digital (3, 6, 538248)-net over F81, using
- digital (10, 16, 177148)-net over F81, using
- net defined by OOA [i] based on linear OOA(8116, 177148, F81, 6, 6) (dual of [(177148, 6), 1062872, 7]-NRT-code), using
- OA 3-folding and stacking [i] based on linear OA(8116, 531444, F81, 6) (dual of [531444, 531428, 7]-code), using
- construction X applied to Ce(5) ⊂ Ce(4) [i] based on
- linear OA(8116, 531441, F81, 6) (dual of [531441, 531425, 7]-code), using an extension Ce(5) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,5], and designed minimum distance d ≥ |I|+1 = 6 [i]
- linear OA(8113, 531441, F81, 5) (dual of [531441, 531428, 6]-code), using an extension Ce(4) of the primitive narrow-sense BCH-code C(I) with length 531440 = 813−1, defining interval I = [1,4], and designed minimum distance d ≥ |I|+1 = 5 [i]
- linear OA(810, 3, F81, 0) (dual of [3, 3, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(810, s, F81, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(5) ⊂ Ce(4) [i] based on
- OA 3-folding and stacking [i] based on linear OA(8116, 531444, F81, 6) (dual of [531444, 531428, 7]-code), using
- net defined by OOA [i] based on linear OOA(8116, 177148, F81, 6, 6) (dual of [(177148, 6), 1062872, 7]-NRT-code), using
- digital (0, 0, 177148)-net over F81, using
- generalized (u, u+v)-construction [i] based on
- 811 times duplication [i] based on digital (23, 29, large)-net over F81, using
(34, 40, large)-Net over F27 — Digital
Digital (34, 40, large)-net over F27, using
- t-expansion [i] based on digital (32, 40, large)-net over F27, using
- 1 times m-reduction [i] based on digital (32, 41, large)-net over F27, using
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(2741, large, F27, 9) (dual of [large, large−41, 10]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 14348908 | 2710−1, defining interval I = [0,4], and minimum distance d ≥ |{−4,−3,…,4}|+1 = 10 (BCH-bound) [i]
- embedding of OOA with Gilbert–VarÅ¡amov bound [i] based on linear OA(2741, large, F27, 9) (dual of [large, large−41, 10]-code), using
- 1 times m-reduction [i] based on digital (32, 41, large)-net over F27, using
(34, 40, large)-Net in Base 27 — Upper bound on s
There is no (34, 40, large)-net in base 27, because
- 4 times m-reduction [i] would yield (34, 36, large)-net in base 27, but