Best Known (192−38, 192, s)-Nets in Base 3
(192−38, 192, 688)-Net over F3 — Constructive and digital
Digital (154, 192, 688)-net over F3, using
- 4 times m-reduction [i] based on digital (154, 196, 688)-net over F3, using
- trace code for nets [i] based on digital (7, 49, 172)-net over F81, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 7 and N(F) ≥ 172, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- trace code for nets [i] based on digital (7, 49, 172)-net over F81, using
(192−38, 192, 2323)-Net over F3 — Digital
Digital (154, 192, 2323)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3192, 2323, F3, 38) (dual of [2323, 2131, 39]-code), using
- 113 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 6 times 0, 1, 9 times 0, 1, 12 times 0, 1, 16 times 0, 1, 21 times 0, 1, 26 times 0) [i] based on linear OA(3176, 2194, F3, 38) (dual of [2194, 2018, 39]-code), using
- construction X applied to Ce(37) ⊂ Ce(36) [i] based on
- linear OA(3176, 2187, F3, 38) (dual of [2187, 2011, 39]-code), using an extension Ce(37) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,37], and designed minimum distance d ≥ |I|+1 = 38 [i]
- linear OA(3169, 2187, F3, 37) (dual of [2187, 2018, 38]-code), using an extension Ce(36) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,36], and designed minimum distance d ≥ |I|+1 = 37 [i]
- linear OA(30, 7, F3, 0) (dual of [7, 7, 1]-code), using
- discarding factors / shortening the dual code based on linear OA(30, s, F3, 0) (dual of [s, s, 1]-code) with arbitrarily large s, using
- construction X applied to Ce(37) ⊂ Ce(36) [i] based on
- 113 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 6 times 0, 1, 9 times 0, 1, 12 times 0, 1, 16 times 0, 1, 21 times 0, 1, 26 times 0) [i] based on linear OA(3176, 2194, F3, 38) (dual of [2194, 2018, 39]-code), using
(192−38, 192, 262779)-Net in Base 3 — Upper bound on s
There is no (154, 192, 262780)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 40 486481 692703 443163 302548 330262 233479 047116 884425 139216 900889 463564 190527 743775 536811 899537 > 3192 [i]