Best Known (28, 28+43, s)-Nets in Base 3
(28, 28+43, 37)-Net over F3 — Constructive and digital
Digital (28, 71, 37)-net over F3, using
- t-expansion [i] based on digital (27, 71, 37)-net over F3, using
- net from sequence [i] based on digital (27, 36)-sequence over F3, using
- Niederreiter–Xing sequence construction III based on the algebraic function field F/F3 with g(F) = 26, N(F) = 36, and 1 place with degree 2 [i] based on function field F/F3 with g(F) = 26 and N(F) ≥ 36, using an explicitly constructive algebraic function field [i]
- net from sequence [i] based on digital (27, 36)-sequence over F3, using
(28, 28+43, 39)-Net over F3 — Digital
Digital (28, 71, 39)-net over F3, using
- t-expansion [i] based on digital (27, 71, 39)-net over F3, using
- net from sequence [i] based on digital (27, 38)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 27 and N(F) ≥ 39, using
- net from sequence [i] based on digital (27, 38)-sequence over F3, using
(28, 28+43, 134)-Net in Base 3 — Upper bound on s
There is no (28, 71, 135)-net in base 3, because
- extracting embedded orthogonal array [i] would yield OA(371, 135, S3, 43), but
- the linear programming bound shows that M ≥ 15517 693217 689196 948814 275840 217839 188528 833666 506027 197482 862926 479145 955220 202759 225092 599101 677573 597273 739795 383261 969362 675805 202325 361940 553286 399020 268827 436811 157921 842316 026009 799441 891519 060953 199556 255550 386399 744243 197229 021375 769233 758290 438783 812037 692310 974622 568682 535976 282881 / 1 978655 878974 329766 696946 944041 110095 992060 424182 878846 382180 050085 637907 736643 328890 021267 752512 900990 168702 902588 902931 052866 529048 536876 574704 276924 879749 598186 293521 925859 415088 535294 830297 315800 130604 056048 836627 827058 062734 488069 759928 856867 528845 559020 > 371 [i]