Best Known (189, 189+49, s)-Nets in Base 3
(189, 189+49, 688)-Net over F3 — Constructive and digital
Digital (189, 238, 688)-net over F3, using
- t-expansion [i] based on digital (187, 238, 688)-net over F3, using
- 2 times m-reduction [i] based on digital (187, 240, 688)-net over F3, using
- trace code for nets [i] based on digital (7, 60, 172)-net over F81, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 7 and N(F) ≥ 172, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- trace code for nets [i] based on digital (7, 60, 172)-net over F81, using
- 2 times m-reduction [i] based on digital (187, 240, 688)-net over F3, using
(189, 189+49, 2274)-Net over F3 — Digital
Digital (189, 238, 2274)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3238, 2274, F3, 49) (dual of [2274, 2036, 50]-code), using
- 73 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 5 times 0, 1, 7 times 0, 1, 11 times 0, 1, 15 times 0, 1, 20 times 0) [i] based on linear OA(3225, 2188, F3, 49) (dual of [2188, 1963, 50]-code), using
- the expurgated narrow-sense BCH-code C(I) with length 2188 | 314−1, defining interval I = [0,24], and minimum distance d ≥ |{−24,−23,…,24}|+1 = 50 (BCH-bound) [i]
- 73 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 5 times 0, 1, 7 times 0, 1, 11 times 0, 1, 15 times 0, 1, 20 times 0) [i] based on linear OA(3225, 2188, F3, 49) (dual of [2188, 1963, 50]-code), using
(189, 189+49, 252269)-Net in Base 3 — Upper bound on s
There is no (189, 238, 252270)-net in base 3, because
- 1 times m-reduction [i] would yield (189, 237, 252270)-net in base 3, but
- the generalized Rao bound for nets shows that 3m ≥ 119607 845538 102759 477951 851217 562446 088794 627811 542269 921461 307435 691760 930214 961512 912357 575977 363641 234781 059313 > 3237 [i]