Best Known (73, 100, s)-Nets in Base 3
(73, 100, 228)-Net over F3 — Constructive and digital
Digital (73, 100, 228)-net over F3, using
- 31 times duplication [i] based on digital (72, 99, 228)-net over F3, using
- trace code for nets [i] based on digital (6, 33, 76)-net over F27, using
- net from sequence [i] based on digital (6, 75)-sequence over F27, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F27 with g(F) = 6 and N(F) ≥ 76, using
- net from sequence [i] based on digital (6, 75)-sequence over F27, using
- trace code for nets [i] based on digital (6, 33, 76)-net over F27, using
(73, 100, 374)-Net over F3 — Digital
Digital (73, 100, 374)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3100, 374, F3, 27) (dual of [374, 274, 28]-code), using
- 273 step Varšamov–Edel lengthening with (ri) = (9, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0) [i] based on linear OA(327, 28, F3, 27) (dual of [28, 1, 28]-code or 28-arc in PG(26,3)), using
- dual of repetition code with length 28 [i]
- 273 step Varšamov–Edel lengthening with (ri) = (9, 5, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0) [i] based on linear OA(327, 28, F3, 27) (dual of [28, 1, 28]-code or 28-arc in PG(26,3)), using
(73, 100, 12172)-Net in Base 3 — Upper bound on s
There is no (73, 100, 12173)-net in base 3, because
- 1 times m-reduction [i] would yield (73, 99, 12173)-net in base 3, but
- the generalized Rao bound for nets shows that 3m ≥ 171818 823267 643994 158331 689822 901371 477741 592971 > 399 [i]