Best Known (150, 192, s)-Nets in Base 3
(150, 192, 640)-Net over F3 — Constructive and digital
Digital (150, 192, 640)-net over F3, using
- t-expansion [i] based on digital (149, 192, 640)-net over F3, using
- trace code for nets [i] based on digital (5, 48, 160)-net over F81, using
- net from sequence [i] based on digital (5, 159)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 5 and N(F) ≥ 160, using
- net from sequence [i] based on digital (5, 159)-sequence over F81, using
- trace code for nets [i] based on digital (5, 48, 160)-net over F81, using
(150, 192, 1405)-Net over F3 — Digital
Digital (150, 192, 1405)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3192, 1405, F3, 42) (dual of [1405, 1213, 43]-code), using
- 1212 step Varšamov–Edel lengthening with (ri) = (15, 7, 4, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0) [i] based on linear OA(342, 43, F3, 42) (dual of [43, 1, 43]-code or 43-arc in PG(41,3)), using
- dual of repetition code with length 43 [i]
- 1212 step Varšamov–Edel lengthening with (ri) = (15, 7, 4, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 21 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 27 times 0, 1, 29 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 32 times 0, 1, 32 times 0, 1, 34 times 0, 1, 35 times 0) [i] based on linear OA(342, 43, F3, 42) (dual of [43, 1, 43]-code or 43-arc in PG(41,3)), using
(150, 192, 99913)-Net in Base 3 — Upper bound on s
There is no (150, 192, 99914)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 40 486492 977965 078742 197559 008392 921205 480771 944300 543997 474832 064483 008513 592920 107146 699341 > 3192 [i]