Best Known (186, 232, s)-Nets in Base 3
(186, 232, 688)-Net over F3 — Constructive and digital
Digital (186, 232, 688)-net over F3, using
- t-expansion [i] based on digital (184, 232, 688)-net over F3, using
- 4 times m-reduction [i] based on digital (184, 236, 688)-net over F3, using
- trace code for nets [i] based on digital (7, 59, 172)-net over F81, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F81 with g(F) = 7 and N(F) ≥ 172, using
- net from sequence [i] based on digital (7, 171)-sequence over F81, using
- trace code for nets [i] based on digital (7, 59, 172)-net over F81, using
- 4 times m-reduction [i] based on digital (184, 236, 688)-net over F3, using
(186, 232, 2567)-Net over F3 — Digital
Digital (186, 232, 2567)-net over F3, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(3232, 2567, F3, 46) (dual of [2567, 2335, 47]-code), using
- 359 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 1, 0, 1, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 8 times 0, 1, 10 times 0, 1, 14 times 0, 1, 18 times 0, 1, 23 times 0, 1, 28 times 0, 1, 35 times 0, 1, 41 times 0, 1, 46 times 0, 1, 51 times 0, 1, 55 times 0) [i] based on linear OA(3211, 2187, F3, 46) (dual of [2187, 1976, 47]-code), using
- an extension Ce(45) of the primitive narrow-sense BCH-code C(I) with length 2186 = 37−1, defining interval I = [1,45], and designed minimum distance d ≥ |I|+1 = 46 [i]
- 359 step Varšamov–Edel lengthening with (ri) = (4, 1, 1, 1, 0, 1, 0, 0, 1, 4 times 0, 1, 5 times 0, 1, 8 times 0, 1, 10 times 0, 1, 14 times 0, 1, 18 times 0, 1, 23 times 0, 1, 28 times 0, 1, 35 times 0, 1, 41 times 0, 1, 46 times 0, 1, 51 times 0, 1, 55 times 0) [i] based on linear OA(3211, 2187, F3, 46) (dual of [2187, 1976, 47]-code), using
(186, 232, 306263)-Net in Base 3 — Upper bound on s
There is no (186, 232, 306264)-net in base 3, because
- the generalized Rao bound for nets shows that 3m ≥ 492 193774 880878 042945 198147 222929 129038 965058 148590 036995 032452 486488 159855 209936 558523 540308 810053 764839 989025 > 3232 [i]