Best Known (167, s)-Sequences in Base 3
(167, 89)-Sequence over F3 — Constructive and digital
Digital (167, 89)-sequence over F3, using
- Niederreiter–Xing sequence construction III based on function field F4/F3 with g(F4) = 79, N(F4) ≥ 2, and N(F4) + N2(F4) ≥ 90 from GarcÃa–Stichtenoth tower as constant field extension [i]
(167, 162)-Sequence over F3 — Digital
Digital (167, 162)-sequence over F3, using
- t-expansion [i] based on digital (151, 162)-sequence over F3, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F3 with g(F) = 151 and N(F) ≥ 163, using
(167, 347)-Sequence in Base 3 — Upper bound on s
There is no (167, 348)-sequence in base 3, because
- net from sequence [i] would yield (167, m, 349)-net in base 3 for arbitrarily large m, but
- m-reduction [i] would yield (167, 1738, 349)-net in base 3, but
- extracting embedded OOA [i] would yield OOA(31738, 349, S3, 5, 1571), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 4915 702176 541764 083317 576466 436029 418283 475940 249294 781848 472725 403632 262283 236864 621995 498753 541619 944896 856748 144958 669720 214971 027957 140700 459402 607696 593453 502930 177314 838946 938469 668325 042976 659159 847651 337414 317653 967598 958251 352647 317108 504660 801265 321717 919401 074068 789076 821232 377128 613493 199416 939754 184475 403621 935990 922151 295059 465917 436853 172226 547223 663217 694271 682011 421361 425400 455151 921218 765816 891256 101904 335979 277463 928294 628687 437861 634346 357768 284375 667126 506221 357291 094468 285026 648016 391683 401729 453804 476064 351211 143481 147776 802091 105329 403961 510255 686401 716358 761640 306151 368339 115677 825843 603777 666897 720884 268985 782625 197369 594337 479291 165538 632960 484650 316752 214828 596826 668791 429118 435413 957510 961500 311967 320119 108975 414217 918390 028881 125404 681437 697477 805055 808868 255367 405229 963450 192178 533866 755365 / 262 > 31738 [i]
- extracting embedded OOA [i] would yield OOA(31738, 349, S3, 5, 1571), but
- m-reduction [i] would yield (167, 1738, 349)-net in base 3, but