Best Known (109−95, 109, s)-Nets in Base 32
(109−95, 109, 120)-Net over F32 — Constructive and digital
Digital (14, 109, 120)-net over F32, using
- t-expansion [i] based on digital (11, 109, 120)-net over F32, using
- net from sequence [i] based on digital (11, 119)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 11 and N(F) ≥ 120, using
- net from sequence [i] based on digital (11, 119)-sequence over F32, using
(109−95, 109, 146)-Net over F32 — Digital
Digital (14, 109, 146)-net over F32, using
- net from sequence [i] based on digital (14, 145)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 14 and N(F) ≥ 146, using
(109−95, 109, 1670)-Net over F32 — Upper bound on s (digital)
There is no digital (14, 109, 1671)-net over F32, because
- 1 times m-reduction [i] would yield digital (14, 108, 1671)-net over F32, but
- extracting embedded orthogonal array [i] would yield linear OA(32108, 1671, F32, 94) (dual of [1671, 1563, 95]-code), but
- the Johnson bound shows that N ≤ 3 541908 173301 411346 375250 967567 925428 311542 639090 319188 840300 870338 411513 380212 761376 070929 736549 203905 829044 732053 928945 303439 104088 261982 076889 012893 665124 527324 800335 073846 835935 133085 660107 070782 923412 003657 280475 468915 113739 368933 736330 024301 582831 911839 681008 679243 039526 973082 895357 468842 824496 561091 065609 100338 811037 323961 600059 330814 341411 396131 019709 102506 296319 357889 360480 964514 712710 836943 258513 408735 507778 900773 579335 958506 326404 777917 634064 762025 907031 280618 020982 163824 809449 849649 510223 820757 591193 090986 405270 874011 424404 884907 740287 651174 087675 938477 953794 927158 370191 239049 321721 245580 056684 119163 581633 282132 721199 219945 347901 709428 540314 540934 284939 370398 554943 439648 200856 153016 066960 445119 692525 905731 401909 846802 653121 846742 174279 606691 828470 026300 760561 594579 843477 880941 676976 271613 359830 024397 040444 853775 484567 211063 727209 867371 629955 820465 768047 393749 683109 479201 869680 459819 733019 990365 935803 705860 037949 734374 611101 944316 453724 772679 099502 609717 575622 409900 751343 986484 628953 976388 856514 708888 780502 605846 760312 080675 908139 952335 588841 380647 336820 144072 168679 135145 755768 908487 184386 963738 143449 185677 397678 630498 019165 870612 745049 581009 839842 997877 561125 781856 018103 254240 770991 525580 500988 589958 586652 436522 849365 498879 797680 788539 001335 151611 144946 329874 569024 158624 261943 871406 445331 208490 176241 452495 312476 248967 334270 448801 084112 834322 291116 498141 152182 852311 549971 136196 451401 406092 390445 923104 639921 436921 171869 891301 287362 847462 237657 673984 855086 170246 954446 326277 188766 599032 576970 262206 987262 707161 278347 330707 576291 669122 579607 315211 892462 106770 663263 632292 525627 815435 659772 778030 312813 262953 671118 831503 748916 665274 513325 374566 422284 663398 208471 908302 226253 286134 910673 216124 430050 705579 517558 263234 090875 342706 836733 881281 139667 221348 939382 033653 186186 825996 717037 700716 775836 222097 795290 108601 654610 504649 462848 423935 823953 334840 527391 835955 427036 844261 108005 527581 423353 463550 020692 246146 580192 245146 635095 972946 921308 931516 198252 671621 154916 787172 892917 459480 458278 102030 534501 473208 555950 559058 953260 709135 209783 635836 157378 477063 683259 031407 439505 222130 913224 423815 494761 691876 681826 789964 704646 043752 423079 272515 098280 910161 888851 144550 137207 372590 371971 729282 100195 669762 095161 176368 483446 015251 451956 703110 093628 303159 446883 170007 177392 656539 294254 488732 498342 856074 651691 674371 573770 993606 684965 < 321563 [i]
- extracting embedded orthogonal array [i] would yield linear OA(32108, 1671, F32, 94) (dual of [1671, 1563, 95]-code), but
(109−95, 109, 1679)-Net in Base 32 — Upper bound on s
There is no (14, 109, 1680)-net in base 32, because
- 1 times m-reduction [i] would yield (14, 108, 1680)-net in base 32, but
- the generalized Rao bound for nets shows that 32m ≥ 3 678641 847941 896109 208852 865723 026279 695733 786736 739911 293338 685613 154991 354452 761213 182137 676352 366339 386051 003775 632988 114112 377950 445789 188408 211437 461860 958404 > 32108 [i]