Best Known (14, 14+96, s)-Nets in Base 32
(14, 14+96, 120)-Net over F32 — Constructive and digital
Digital (14, 110, 120)-net over F32, using
- t-expansion [i] based on digital (11, 110, 120)-net over F32, using
- net from sequence [i] based on digital (11, 119)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 11 and N(F) ≥ 120, using
- net from sequence [i] based on digital (11, 119)-sequence over F32, using
(14, 14+96, 146)-Net over F32 — Digital
Digital (14, 110, 146)-net over F32, using
- net from sequence [i] based on digital (14, 145)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 14 and N(F) ≥ 146, using
(14, 14+96, 1667)-Net over F32 — Upper bound on s (digital)
There is no digital (14, 110, 1668)-net over F32, because
- extracting embedded orthogonal array [i] would yield linear OA(32110, 1668, F32, 96) (dual of [1668, 1558, 97]-code), but
- the Johnson bound shows that N ≤ 102610 115548 442791 467071 658246 015686 715589 530093 479312 019274 938079 569604 059158 683572 527024 501423 462623 262730 672225 923643 716388 273398 640890 139375 989637 127178 655945 792204 014268 025705 718346 514146 402718 428065 441020 799160 987237 560958 796375 691003 263952 177929 963449 894124 903253 299383 611610 626659 702626 905824 768903 601958 977820 845646 681233 208586 380555 286463 892009 120882 184803 030117 191793 501422 896810 985032 774865 195012 474529 673826 634992 209766 587546 028217 838384 120404 776034 170962 754616 521340 541310 907668 478191 389049 020243 041350 142793 660663 783076 741932 363205 487975 948860 938389 176591 800788 590748 908851 635289 710898 600936 348518 166566 526677 078635 733137 732959 702905 877790 228378 543010 246707 166194 164239 647148 374733 803759 413998 586152 022796 898376 603630 953410 574518 849898 281966 596132 316327 954992 964261 260491 191242 704064 158582 385717 036585 438775 143945 569012 142597 735678 220561 291964 187002 143192 008071 355326 098392 001975 437477 618483 369111 525913 283639 399811 205152 604484 058123 181752 703775 899028 067399 099758 101395 333705 638018 497418 141252 722887 315291 435935 595781 461671 385085 362677 100493 602894 526927 270818 641851 654888 017517 059558 950718 158481 845409 037466 019291 207497 629747 119169 903200 193088 368299 627515 361624 776814 235722 250465 303757 633258 403164 533483 808808 990968 040845 576612 034853 226645 017678 494086 021684 541730 619773 695551 243913 787592 945726 946609 471895 861334 963447 378606 251112 588687 869331 752722 806571 202844 841649 413655 580323 107133 718068 779068 257773 901926 716455 578246 021542 421583 467112 144735 206268 004172 665272 279189 712974 455751 711285 579765 372468 867781 381897 389292 619916 216047 724014 110898 615804 186747 450159 621564 464987 729784 171259 468329 864742 513434 764016 115639 769137 912653 263581 879634 092220 222032 094693 915259 590039 853833 644035 446747 908660 425302 286265 095554 965144 820576 007111 578824 133577 281310 701653 043197 860731 246365 059199 249661 262233 311936 605295 562198 748003 922919 842375 976746 674279 545050 761760 778971 217202 987228 310115 373542 946140 776668 317326 256773 445009 675369 413318 141768 018726 286416 037752 336227 254199 331244 518740 286011 048626 764348 137894 395367 335401 266840 284775 400882 382019 303368 330857 952174 081495 711957 200737 152582 050505 339617 419138 758308 809817 163650 449366 865404 231311 906904 882390 338992 124529 272795 361522 319422 374470 221208 547642 898005 467892 801286 860168 117996 553718 891385 813636 773859 681424 410570 478372 441427 426975 632525 371557 408062 302739 259634 048076 535507 609761 692258 367582 393589 < 321558 [i]
(14, 14+96, 1676)-Net in Base 32 — Upper bound on s
There is no (14, 110, 1677)-net in base 32, because
- the generalized Rao bound for nets shows that 32m ≥ 3776 987402 402154 757222 479892 025979 980471 862097 572297 861558 316429 979285 154226 870494 092125 688907 743295 148127 890421 276333 695322 970209 201440 904293 157025 607009 113083 614520 > 32110 [i]