Best Known (71, s)-Sequences in Base 32
(71, 119)-Sequence over F32 — Constructive and digital
Digital (71, 119)-sequence over F32, using
- t-expansion [i] based on digital (11, 119)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 11 and N(F) ≥ 120, using
(71, 324)-Sequence over F32 — Digital
Digital (71, 324)-sequence over F32, using
- t-expansion [i] based on digital (44, 324)-sequence over F32, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F32 with g(F) = 44 and N(F) ≥ 325, using
(71, 2268)-Sequence in Base 32 — Upper bound on s
There is no (71, 2269)-sequence in base 32, because
- net from sequence [i] would yield (71, m, 2270)-net in base 32 for arbitrarily large m, but
- m-reduction [i] would yield (71, 4537, 2270)-net in base 32, but
- extracting embedded OOA [i] would yield OOA(324537, 2270, S32, 2, 4466), but
- the (dual) Plotkin bound for OOAs shows that M ≥ 37090 159648 999264 550873 150170 406813 093273 529880 551667 208904 953963 574569 315627 990364 538954 465457 505430 944322 906796 286143 115292 587704 651850 663374 335693 563929 455337 145445 526168 850339 195722 078025 845232 091501 039038 671679 890103 793579 087960 325450 569137 918602 665591 669163 523444 481696 470531 338714 775046 138964 730563 441721 636389 530144 949603 161194 807681 391803 435256 843452 694763 149507 295754 448947 046936 579458 549987 214443 841240 214523 669094 976908 857635 637782 174767 490672 009653 568189 279904 097502 257106 525440 878204 673447 096840 653966 903108 079577 228754 265882 244871 752358 151919 185648 682522 180228 872111 328984 659712 901538 058538 962921 289672 418794 538102 000881 738674 002841 961074 706879 316502 971089 697766 391539 876922 369685 151006 756809 292517 541163 726545 661267 008282 088267 856925 935545 831359 264969 128702 338946 293335 329168 852845 096355 377357 086357 872420 687649 329984 422235 892174 277685 717083 099039 953090 892448 333921 482940 266640 641391 786937 556488 368095 932716 679629 065318 951000 912999 844414 454170 977516 609706 539328 743101 907488 974428 097606 681454 521460 978259 064247 224315 029952 642147 251165 451329 853424 512510 366793 045979 306670 836716 044770 071026 697514 091692 233018 489667 254730 385381 968211 392085 912749 060943 857369 163974 897642 927445 534981 090556 245203 190372 620833 980861 606015 554913 033148 000171 073512 256216 341111 615438 462978 187839 655608 389392 363128 203942 551890 731504 698110 181516 819307 731028 387649 355407 692324 242086 648706 956477 492756 739549 780131 519841 509065 543034 231772 855480 087861 588853 166369 674857 435898 346344 826887 527865 148685 701382 655698 630285 710733 501123 224328 143998 636817 352227 596722 228039 502624 862682 870977 821836 843082 431432 058989 374701 172267 505527 918075 574599 919271 645801 298148 107472 054826 094322 038886 402466 644357 471559 912224 324227 458595 226466 691222 967484 991085 849949 985874 532580 304404 386524 025589 742254 283536 350278 951829 973800 131248 120823 418925 173131 980473 427734 659658 239697 455675 148435 088065 903763 496448 071947 539648 843397 900177 982513 869821 990230 801105 653386 931698 414048 150419 640146 825475 798194 580674 934910 713860 635106 564756 235513 114998 599464 142550 808151 175205 538615 837692 751938 953489 483318 424406 230408 237286 490167 766676 050021 311126 857518 852454 965297 085636 093816 389355 527042 394362 115822 492455 114740 986481 430613 043936 818091 446453 369411 257968 859024 766518 569891 750584 298291 882965 219773 084212 385368 877915 395909 616334 269855 404700 096568 281317 463594 428381 588495 080444 261974 140650 852559 125582 850611 173397 398044 597855 509577 900795 115335 313054 269584 888889 425428 827017 596086 942964 153612 860838 238252 502119 724904 129559 014299 666306 966811 155801 032504 316997 181630 763008 978943 729199 025385 990529 767263 038963 957163 249428 088091 961617 252381 221688 260695 636186 398144 899039 450055 263133 784920 554376 838189 782649 382833 600081 732724 862370 739077 025052 815384 621234 313149 114659 080490 257945 726256 605907 637670 352680 079980 307954 290988 363053 412060 574777 472431 677054 336286 692128 625407 345779 262689 493597 966670 768237 323384 018792 098644 630807 016827 515526 958575 046401 284686 144839 596098 796213 489829 689775 095987 939766 934485 436292 721070 663706 259521 452707 359128 026704 328221 854411 243447 008813 733542 359390 434776 225669 179394 264010 720857 552903 159533 264383 452314 824432 343712 057231 588714 387808 864674 713220 882722 353884 825098 389901 930864 834020 215183 016041 590211 579674 756345 068151 714035 902294 909431 525537 764641 204653 662950 257667 753587 629511 971508 011249 391751 565636 361599 965110 449643 930017 599555 368128 495727 718006 543164 667062 687708 117239 155437 385992 394014 021812 348790 794700 316622 281206 691340 508183 901179 586978 097590 210525 742859 957886 454571 739208 631821 850542 939631 399232 901126 994218 278245 185240 595260 898728 046440 262857 299695 517795 222257 535195 763828 900634 085472 272380 824386 221205 131850 640149 867181 313665 409090 095266 883759 350454 690063 155978 709742 811401 329503 937267 492587 747125 413532 216421 490608 582146 217682 451818 147254 363378 134141 242468 892531 112571 567919 688693 511157 790388 425172 060949 798429 272923 581416 492418 596059 906815 053527 422522 557242 547113 410474 802240 142403 207934 304982 902989 524605 680150 334802 897882 262327 704740 880458 807732 977815 740198 470777 716235 501218 717305 246377 542093 684845 776894 538370 173039 107475 171398 432319 791932 280591 630323 253345 261617 304669 114273 376491 365639 234986 796829 447265 802285 489051 477231 417786 613372 339680 399266 506227 773937 085906 819968 301399 538127 011567 667349 528396 256288 702568 883696 467843 960608 312396 338795 413675 401340 683631 778017 115230 471820 853414 159010 067851 818250 638128 061995 389000 896664 060613 770671 251637 138826 235963 497789 306530 625074 926904 275330 448431 734513 947391 504958 058339 989118 767054 497743 297501 529103 309962 268790 468504 125324 428588 335680 957942 159435 293181 399738 879821 496778 933994 411328 262703 661195 225168 217516 045245 264006 653604 850286 705328 400022 371129 337251 041904 950787 156308 905302 249171 076820 841599 442831 739371 003515 146128 678227 930518 466717 654362 824885 374259 627951 012135 793121 866402 163871 234960 945940 884360 762080 280720 545225 270877 736046 549848 684453 618631 353980 088204 716459 027042 002258 654706 859687 842250 538188 787702 926997 478967 201475 417637 929699 959433 678768 651126 024556 164279 075597 934032 965798 446111 466434 575752 422941 010997 240744 010428 101484 676222 352346 578027 330118 378098 060412 779870 283349 767249 834509 772059 239270 478099 059649 547620 151602 861305 583826 627187 686374 441366 538964 805717 793773 879040 963635 746084 018472 856350 323296 871374 810940 511182 888929 678716 251436 225056 910783 508469 068781 539477 359627 685061 746851 201057 069547 602864 659208 246907 994199 440002 304359 282180 759790 156638 546556 117132 833130 248412 926292 441027 472998 986931 527701 978032 168426 430475 979491 962829 039839 898624 441248 953024 503841 015924 039053 215280 543568 285886 367790 926603 177533 697494 452515 779944 320028 215399 024987 646257 839494 265226 953998 929580 540069 981436 630692 412051 020007 066772 094997 918619 157998 356659 447606 327048 413625 245582 713152 135534 665943 945460 923195 707127 656934 032398 868519 873222 945407 958328 120382 506604 161012 040450 791753 714435 165903 660246 776821 618519 621457 056158 094391 370026 623324 398400 560225 131405 032537 170108 581706 283075 133727 930431 800005 400516 643936 979746 029069 480044 155730 416104 897168 195364 240444 268091 339380 058627 793724 670132 885970 049864 698809 955526 172222 747184 007210 183183 730302 028259 094340 218077 171887 888069 023725 757851 113154 700289 557307 227174 427943 640835 833156 695887 104281 555629 600252 650986 666088 204641 421638 250673 362790 363860 253284 056216 802032 878817 196771 430120 898935 733936 667892 988633 964795 209807 993504 917273 481995 263650 991008 340055 860655 895154 341590 197316 015347 934803 556747 875738 847703 579039 140024 178543 873938 371588 116642 816656 010571 249375 943285 352119 086692 485491 200313 304799 883389 189360 327479 739250 266151 098920 445131 566745 071144 627190 333900 037288 628337 948867 842133 706119 398063 970040 062994 479634 908615 165198 940124 901874 777813 758413 777099 798272 442412 951946 146870 967330 936499 659323 924029 161469 152396 077478 639719 415641 962828 060721 126241 171428 874739 751104 716642 169096 374600 773408 345786 944469 658424 165039 034179 978432 359928 458225 343684 681800 093812 036934 282770 131128 768865 772333 226917 659012 156265 100214 659515 009940 827899 557830 459392 / 4467 > 324537 [i]
- extracting embedded OOA [i] would yield OOA(324537, 2270, S32, 2, 4466), but
- m-reduction [i] would yield (71, 4537, 2270)-net in base 32, but