Best Known (68, 68+29, s)-Nets in Base 4
(68, 68+29, 312)-Net over F4 — Constructive and digital
Digital (68, 97, 312)-net over F4, using
- 41 times duplication [i] based on digital (67, 96, 312)-net over F4, using
- trace code for nets [i] based on digital (3, 32, 104)-net over F64, using
- net from sequence [i] based on digital (3, 103)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 3 and N(F) ≥ 104, using
- net from sequence [i] based on digital (3, 103)-sequence over F64, using
- trace code for nets [i] based on digital (3, 32, 104)-net over F64, using
(68, 68+29, 473)-Net over F4 — Digital
Digital (68, 97, 473)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(497, 473, F4, 29) (dual of [473, 376, 30]-code), using
- 375 step Varšamov–Edel lengthening with (ri) = (8, 4, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 21 times 0) [i] based on linear OA(429, 30, F4, 29) (dual of [30, 1, 30]-code or 30-arc in PG(28,4)), using
- dual of repetition code with length 30 [i]
- 375 step Varšamov–Edel lengthening with (ri) = (8, 4, 2, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 17 times 0, 1, 18 times 0, 1, 19 times 0, 1, 21 times 0) [i] based on linear OA(429, 30, F4, 29) (dual of [30, 1, 30]-code or 30-arc in PG(28,4)), using
(68, 68+29, 27075)-Net in Base 4 — Upper bound on s
There is no (68, 97, 27076)-net in base 4, because
- 1 times m-reduction [i] would yield (68, 96, 27076)-net in base 4, but
- the generalized Rao bound for nets shows that 4m ≥ 6280 278904 057411 644176 337356 127369 211839 610842 658968 436336 > 496 [i]