Best Known (13, 13+33, s)-Nets in Base 4
(13, 13+33, 30)-Net over F4 — Constructive and digital
Digital (13, 46, 30)-net over F4, using
- net from sequence [i] based on digital (13, 29)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 13 and N(F) ≥ 30, using
- F4 from the tower of function fields by GarcÃa and Stichtenoth over F4 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 13 and N(F) ≥ 30, using
(13, 13+33, 33)-Net over F4 — Digital
Digital (13, 46, 33)-net over F4, using
- net from sequence [i] based on digital (13, 32)-sequence over F4, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F4 with g(F) = 13 and N(F) ≥ 33, using
(13, 13+33, 88)-Net in Base 4 — Upper bound on s
There is no (13, 46, 89)-net in base 4, because
- extracting embedded orthogonal array [i] would yield OA(446, 89, S4, 33), but
- the linear programming bound shows that M ≥ 159948 754090 845526 538000 065296 234178 559990 299122 417191 613523 054637 510362 523087 608926 611865 440230 434765 845983 597818 865036 995130 058350 788608 / 31 655830 017094 855639 908154 532004 566126 868766 376087 543277 919844 313859 261385 645064 532693 335140 575232 262538 565325 > 446 [i]