Best Known (254−56, 254, s)-Nets in Base 4
(254−56, 254, 1539)-Net over F4 — Constructive and digital
Digital (198, 254, 1539)-net over F4, using
- 1 times m-reduction [i] based on digital (198, 255, 1539)-net over F4, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- the Hermitian function field over F64 [i]
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 28 and N(F) ≥ 513, using
- net from sequence [i] based on digital (28, 512)-sequence over F64, using
- trace code for nets [i] based on digital (28, 85, 513)-net over F64, using
(254−56, 254, 4317)-Net over F4 — Digital
Digital (198, 254, 4317)-net over F4, using
(254−56, 254, 1089980)-Net in Base 4 — Upper bound on s
There is no (198, 254, 1089981)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 837 990346 071484 650747 255908 967328 847449 516440 853055 398213 265036 000128 224527 149865 261466 604279 189769 843419 364608 052435 564033 883664 652905 804283 045870 717179 > 4254 [i]