Best Known (160, 160+56, s)-Nets in Base 4
(160, 160+56, 531)-Net over F4 — Constructive and digital
Digital (160, 216, 531)-net over F4, using
- t-expansion [i] based on digital (159, 216, 531)-net over F4, using
- 12 times m-reduction [i] based on digital (159, 228, 531)-net over F4, using
- trace code for nets [i] based on digital (7, 76, 177)-net over F64, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F64 with g(F) = 7 and N(F) ≥ 177, using
- net from sequence [i] based on digital (7, 176)-sequence over F64, using
- trace code for nets [i] based on digital (7, 76, 177)-net over F64, using
- 12 times m-reduction [i] based on digital (159, 228, 531)-net over F4, using
(160, 160+56, 648)-Net in Base 4 — Constructive
(160, 216, 648)-net in base 4, using
- trace code for nets [i] based on (16, 72, 216)-net in base 64, using
- 5 times m-reduction [i] based on (16, 77, 216)-net in base 64, using
- base change [i] based on digital (5, 66, 216)-net over F128, using
- net from sequence [i] based on digital (5, 215)-sequence over F128, using
- Niederreiter–Xing sequence construction II/III [i] based on function field F/F128 with g(F) = 5 and N(F) ≥ 216, using
- net from sequence [i] based on digital (5, 215)-sequence over F128, using
- base change [i] based on digital (5, 66, 216)-net over F128, using
- 5 times m-reduction [i] based on (16, 77, 216)-net in base 64, using
(160, 160+56, 1674)-Net over F4 — Digital
Digital (160, 216, 1674)-net over F4, using
- embedding of OOA with Gilbert–Varšamov bound [i] based on linear OA(4216, 1674, F4, 56) (dual of [1674, 1458, 57]-code), using
- 1457 step Varšamov–Edel lengthening with (ri) = (15, 7, 4, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 31 times 0, 1, 32 times 0, 1, 34 times 0, 1, 34 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0) [i] based on linear OA(456, 57, F4, 56) (dual of [57, 1, 57]-code or 57-arc in PG(55,4)), using
- dual of repetition code with length 57 [i]
- 1457 step Varšamov–Edel lengthening with (ri) = (15, 7, 4, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 0, 0, 0, 1, 4 times 0, 1, 4 times 0, 1, 4 times 0, 1, 5 times 0, 1, 4 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 5 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 6 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 7 times 0, 1, 8 times 0, 1, 8 times 0, 1, 8 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 9 times 0, 1, 10 times 0, 1, 10 times 0, 1, 11 times 0, 1, 11 times 0, 1, 11 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 12 times 0, 1, 13 times 0, 1, 13 times 0, 1, 14 times 0, 1, 14 times 0, 1, 15 times 0, 1, 15 times 0, 1, 15 times 0, 1, 16 times 0, 1, 16 times 0, 1, 17 times 0, 1, 17 times 0, 1, 18 times 0, 1, 18 times 0, 1, 19 times 0, 1, 19 times 0, 1, 20 times 0, 1, 20 times 0, 1, 21 times 0, 1, 22 times 0, 1, 22 times 0, 1, 23 times 0, 1, 23 times 0, 1, 24 times 0, 1, 25 times 0, 1, 25 times 0, 1, 26 times 0, 1, 27 times 0, 1, 28 times 0, 1, 28 times 0, 1, 29 times 0, 1, 30 times 0, 1, 31 times 0, 1, 31 times 0, 1, 32 times 0, 1, 34 times 0, 1, 34 times 0, 1, 35 times 0, 1, 36 times 0, 1, 37 times 0, 1, 38 times 0, 1, 39 times 0) [i] based on linear OA(456, 57, F4, 56) (dual of [57, 1, 57]-code or 57-arc in PG(55,4)), using
(160, 160+56, 166068)-Net in Base 4 — Upper bound on s
There is no (160, 216, 166069)-net in base 4, because
- the generalized Rao bound for nets shows that 4m ≥ 11091 902171 234595 720204 583293 262021 790697 075836 997543 169079 126278 540337 379368 223195 589179 648711 153541 316453 273892 236418 815460 415060 > 4216 [i]